Activitas Nervosa Superior

, Volume 61, Issue 4, pp 217–226 | Cite as

Twin Loss in the Uterus: Neurodevelopmental Impairment and Reduced Resilience?

  • Noémi Császár
  • István BókkonEmail author
Ideas and Perspectives


Spontaneous loss of a twin most often occurs in the first trimester. This phenomenon is called vanishing twin. Foetuses are especially vulnerable to various stress-related factors. As a result, twin loss in the uterus can produce deep and long-lasting consequences on mental health and may increase the risk of a variety of disease states in the surviving twin. In addition, twin loss may generate strong non-conscious stress that creates epigenetic alterations that impair the brain’s development endocrine and inflammatory substances produced by perturbed signalling pathways. These altered signalling pathways may generate lasting dysfunctions in various areas of the limbic system, predisposing the surviving twin to psychological and emotional problems later in life. We also hypothesise that specific cfDNA and other substances from the dead twin during its reabsorption may affect the surviving twin’s neurodevelopmental and emotional (e.g. resilience) development.


Vanishing twin syndrome (VTS) Cell-free DNA (cfDNA) Epigenetics Resilience Non-conscious stress 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Abadie, M., Waroquier, L., & Terrier, P. (2013). Gist memory in the unconscious-thought effect. Psychological Science, 24, 1253–1259.PubMedGoogle Scholar
  2. Alyamani, R. A. S., & Murgatroyd, C. (2018). Epigenetic programming by early-life stress. Progress in Molecular Biology and Translational Science, 157, 133–150.PubMedGoogle Scholar
  3. American Psychological Association (APA). (2015). The road to resilience.Retrieved from.
  4. Anand, D., Platt, M. J., & Pharoah, P. O. (2007). Vanishing twin: a possible cause of cerebral impairment. Twin Research and Human Genetics, 10(1), 202–209.PubMedGoogle Scholar
  5. Atkinson, D., Iannotti, S., Cozzolino, M., et al. (2010). A new bioinformatics paradigm for the theory, research, and practice of therapeutic hypnosis. The American Journal of Clinical Hypnosis, 53, 27–46.PubMedGoogle Scholar
  6. Bale, T. L. (2015). Epigenetic and transgenerational reprogramming of brain development. Nature Reviews. Neuroscience, 16, 332–344.PubMedGoogle Scholar
  7. Barber, G. N. (2015). STING: infection, inflammation and cancer. Nature Reviews. Immunology, 15, 760–770.PubMedPubMedCentralGoogle Scholar
  8. Bargh, J. A., & Williams, L. E. (2007). The nonconscious regulation of emotion. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 429–445). New York, NY: Guilford Press.Google Scholar
  9. Benoit, R. M., & Baschat, A. A. (2014). Twin-to-twin transfusion syndrome: prenatal diagnosis and treatment. American Journal of Perinatology, 31(7), 583–594.PubMedGoogle Scholar
  10. Birch, L., English, C. A., O’Donoghue, K., et al. (2005). Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clinical Chemistry, 51, 312–320.PubMedGoogle Scholar
  11. Bode, S., He, A. H., Soon, C. S., et al. (2011). Tracking the unconscious generation of free decisions using ultra-high field fMRI. PLoS One, 6(6), e21612.PubMedPubMedCentralGoogle Scholar
  12. van Boeckel, S. R., Davidson, D. J., Norman, J. E., & Stock, S. J. (2018). Cell-free fetal DNA and spontaneous preterm birth. Reproduction, 155, R137–R145.PubMedGoogle Scholar
  13. Bókkon, I., Vas, J. P., Császár, N., & Lukács, T. (2014). Challenges to free will: transgenerational epigenetic information, unconscious processes and vanishing twin syndrome. Reviews in the Neurosciences, 25, 163–175.PubMedGoogle Scholar
  14. Boklage, C. E. (1995). The frequency and survival probability of natural twin conceptions. In L. G. Keith, E. Papiernik, D. M. Keith, et al. (Eds.), Multiple pregnancy: epidemiology, gestation and perinatal outcome (pp. 41–50). New York: Parthenon.Google Scholar
  15. Bonanno, G. A. (2004). Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? The American Psychologist, 59, 20–28.PubMedGoogle Scholar
  16. Bonanno, G. A., & Mancini, A. D. (2008). The human capacity to thrive in the face of potential trauma. Pediatrics, 121, 369–375.PubMedGoogle Scholar
  17. Budhi Nugroho, N. M. S. M. (2018). Prenatal transfer and transference of fear of life and fear of death. International Journal of Pregnancy and Childbirth, 4, 115–123.Google Scholar
  18. Buss, C., Entringer, S., & Wadhwa, P. D. (2012a). Fetal programming of brain development: intrauterine stress and susceptibility to psychopathology. Science Signaling, 5, pt7.PubMedGoogle Scholar
  19. Buss, C., Davis, E. P., Shahbaba, B., et al. (2012b). Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences of the United States of America, 109, E1312–E1319.PubMedPubMedCentralGoogle Scholar
  20. Bzdok, D., Laird, A. R., Zilles, K., et al. (2013). An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Human Brain Mapping, 34, 3247–3266.PubMedGoogle Scholar
  21. Carvalho, A. T., Gouveia, L., Kanna, C. R., et al. (2014). Understanding the structural and dynamic consequences of DNA epigenetic modifications: computational insights into cytosine methylation and hydroxymethylation. Epigenetics, 9, 1604–1612.PubMedGoogle Scholar
  22. Cheng, S. B., Davis, S., & Sharma, S. (2018). Maternal-fetal cross talk through cell-free fetal DNA, telomere shortening, microchimerism, and inflammation. American Journal of Reproductive Immunology, 79, e12851.PubMedPubMedCentralGoogle Scholar
  23. Cholewa-Waclaw, J., Bird, A., von Schimmelmann, M., et al. (2016). The role of epigenetic mechanisms in the regulation of gene expression in the nervous system. The Journal of Neuroscience, 36, 11427–11434.PubMedPubMedCentralGoogle Scholar
  24. Clark, S. J., Lee, H. J., Smallwood, S. A., et al. (2016). Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biology, 17, 72.PubMedPubMedCentralGoogle Scholar
  25. Contro, E., Bernabini, D., & Farina, A. (2017). Cell-free fetal DNA for the prediction of pre-eclampsia at the first and second trimesters: a systematic review and meta-analysis. Molecular Diagnosis & Therapy, 21, 125–135.Google Scholar
  26. Cozzolino, M., Iannotti, S., Castiglione, S., et al. (2014). A bioinformatic analysis of the molecular-genomic signature of therapeutic hypnosis. The International Journal of Psychosocial and Cultural Genomics, Consciousness & Health Research, 1, 6–11.Google Scholar
  27. Császár, N., & Bókkon, I. (2017). Mother-newborn separation at birth in hospitals: a possible risk for neurodevelopmental disorders? Neuroscience and Biobehavioral Reviews, 84, 337–351.Google Scholar
  28. Császár, N., & József, V. P. (2013). Healing prenatal traumas with tandem hypnotherapy. Journal of Clinical and Experimental Cardiology, 4, 256.Google Scholar
  29. Császár, N., Salari, V., Scholkmann, F., et al. (2016). The “hidden observer” as the cognitive unconscious during hypnosis. Activitas Nervosa Superior, 58, 51–61.Google Scholar
  30. Cunliffe, V. T. (2016). The epigenetic impacts of social stress: how does social adversity become biologically embedded? Epigenomics, 8, 1653–1669.PubMedPubMedCentralGoogle Scholar
  31. Dembic, Z. (2005). The Function of Toll-like receptors. In: T. Rich (Ed.), Toll and Toll-Like Receptors: An Immunologic Perspective (pp. 18-55). New York: LandesBioscience/, Kluwer Academic/Plenum Publishers.Google Scholar
  32. Dias, B. G., & Ressler, K. J. (2014a). Experimental evidence needed to demonstrate inter- and trans-generational effects of ancestral experiences in mammals. Bioessays, 36, 919–923.PubMedPubMedCentralGoogle Scholar
  33. Dias, B. G., & Ressler, K. J. (2014b). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17, 89–96.PubMedGoogle Scholar
  34. Dickey, R. P., Taylor, S. N., Lu, P. Y., et al. (2002). Spontaneous reduction of multiple pregnancy: incidence and effect on outcome. American Journal of Obstetrics and Gynecology, 186, 77–83.PubMedGoogle Scholar
  35. Drever, N., Saade, G. R., & Bytautiene, E. (2010). Fetal programming: early-life modulations that affect adult outcomes. Current Allergy and Asthma Reports, 10, 45345–45349.Google Scholar
  36. Dugoff, L., Barberio, A., Whittaker, P. G., et al. (2016). Cell-free DNA fetal fraction and preterm birth. American Journal of Obstetrics and Gynecology, 215(2), 231 e1-7.PubMedGoogle Scholar
  37. Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: an evolutionary--neurodevelopmental theory. Development and Psychopathology, 23, 7–28.PubMedGoogle Scholar
  38. Enninga, E. A., Nevala, W. K., Holtan, S. G., & Markovic, S. N. (2015). Immune reactivation by cell-rree retal DNA in healthy pregnancies re-purposed to target tumors: novel checkpoint inhibition in cancer therapeutics. Frontiers in Immunology, 6, 424.PubMedPubMedCentralGoogle Scholar
  39. Ermakov, A. V., Konkova, M. S., Kostyuk, S. V., et al. (2013). Oxidized extracellular DNA as a stress signal in human cells. Oxidative Medicine and Cellular Longevity, 2013, 649747.PubMedPubMedCentralGoogle Scholar
  40. Everett, T. R., & Chitty, L. S. (2015). Cell-free fetal DNA: the new tool in fetal medicine. Ultrasound in Obstetrics & Gynecology, 45, 499–507.Google Scholar
  41. Falco, P., Milano, V., Pilu, G., et al. (1996). Sonography of pregnancies with first-trimester bleeding and a viable embryo: a study of prognostic indicators by logistic regression analysis. Ultrasound in Obstetrics & Gynecology, 7, 165–169.Google Scholar
  42. Fletcher, D., & Sarkar, M. (2013). Psychological resilience: a review and critique of definitions, concepts, and theory. European Psychologist, 18, 12–23.Google Scholar
  43. Fried, I., Mukamel, R., & Kreiman, G. (2011). Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron, 69, 548–562.PubMedPubMedCentralGoogle Scholar
  44. Fusi, L., & Gordon, H. (1990). Twin pregnancy complicated by single intrauterine death. Problems and outcome with conservative management. British Journal of Obstetrics and Gynaecology, 97, 511-516Google Scholar
  45. van Gaal, S., & Lamme, V. A. (2012). Unconscious high-level information processing: implication for neurobiological theories of consciousness. Neuroscientist, 18, 287–301.PubMedGoogle Scholar
  46. van Gaal, S., Ridderinkhof, K. R., Fahrenfort, J. J., et al. (2008). Frontal cortex mediates unconsciously triggered inhibitory control. The Journal of Neuroscience, 28, 8053–8062.PubMedPubMedCentralGoogle Scholar
  47. van Heteren, C.F., Nijhuis, J.G., Semmekrot, B.A., Mulders, L.G., et al. (1998). Risk for surviving twin after fetal death of co-twin in twin-twin transfusion syndrome. Obstetrics & Gynecology, 92, 215–219.Google Scholar
  48. Gallegos, D. A., Chan, U., Chen, L. F., & West, A. E. (2018). Chromatin regulation of neuronal maturation and plasticity. Trends in Neurosciences, 41, 311–324.PubMedPubMedCentralGoogle Scholar
  49. Gapp, K., Woldemichael, B. T., Bohacek, J., & Mansuy, I. M. (2014a). Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience, 264, 99–111.PubMedGoogle Scholar
  50. Gapp, K., von Ziegler, L., Tweedie-Cullen, R. Y., & Mansuy, I. M. (2014b). Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays, 36, 491–502.PubMedGoogle Scholar
  51. Glover, V. (2014). Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Practice & Research. Clinical Obstetrics & Gynaecology, 28, 25–35.Google Scholar
  52. Glover, V., O'Connor, T. G., & O'Donnell, K. (2010). Prenatal stress and the programming of the HPA axis. Neuroscience and Biobehavioral Reviews, 35, 17–22.PubMedGoogle Scholar
  53. Govindaraju, D., Atzmon, G., & Barzilai, N. (2015). Genetics, lifestyle and longevity: lessons from centenarians. Applied & Translational Genomics, 4, 23–32.Google Scholar
  54. Gräff, J., Kim, D., Dobbin, M. M., & Tsai, L. H. (2011). Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiological Reviews, 91, 603–649.PubMedGoogle Scholar
  55. Gravina, S., Sedivy, J. M., & Vijg, J. (2016). The dark side of circulating nucleic acids. Aging Cell, 15(3), 398–399.PubMedPubMedCentralGoogle Scholar
  56. Grigorenko, E. L., Kornilov, S. A., & Naumova, O. Y. (2016). Epigenetic regulation of cognition: a circumscribed review of the field. Development and Psychopathology, 28, 1285–1304.PubMedGoogle Scholar
  57. Grömminger, S., Yagmur, E., Erkan, S., et al. (2014). Fetal aneuploidy detection by cell-free DNA sequencing for multiple pregnancies and quality issues with vanishing twins. Journal of Clinical Medicine, 3(3), 679–692.PubMedPubMedCentralGoogle Scholar
  58. Grundwald, N. J., & Brunton, P. J. (2015). Prenatal stress programs neuroendocrine stress responses and affective behaviors in second generation rats in a sex-dependent manner. Psychoneuroendocrinology, 62, 204–216.PubMedPubMedCentralGoogle Scholar
  59. Guan, J. S., Xie, H., & Ding, X. (2015). The role of epigenetic regulation in learning and memory. Experimental Neurology, 268, 30–36.PubMedGoogle Scholar
  60. Hahn, S., Huppertz, B., & Holzgreve, W. (2005). Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta, 26, 515–526.PubMedGoogle Scholar
  61. Halusková, J. (2010). Epigenetic studies in human diseases. Folia Biologica, 56, 83–96.PubMedGoogle Scholar
  62. Hanke, M. L., & Kielian, T. (2011). Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clinical Science, 121(9), 367–387.PubMedGoogle Scholar
  63. Hassin, R. R. (2013). Yes it can: on the functional abilities of the human unconscious. Perspectives on Psychological Science, 8, 195–207.PubMedGoogle Scholar
  64. Hassin, R. R., Bargh, J. A., Engell, A., & McCulluch, K. C. (2009). Implicit working memory. Consciousness and Cognition, 18, 665–678.PubMedPubMedCentralGoogle Scholar
  65. Hillman, S. C., Morris, R. K., & Kilby, M. D. (2011). Co-twin prognosis after single fetal death: a systematic review and meta-analysis. Obstetrics and Gynecology, 118(4), 928–940.PubMedGoogle Scholar
  66. Hompes, T., Izzi, B., Gellens, E., Morreels, M., Fieuws, S., Pexsters, A., Schops, G., Dom, M., Van Bree, R., Freson, K., Verhaeghe, J., Spitz, B., Demyttenaere, K., Glover, V., Van den Bergh, B., Allegaert, K., & Claes, S. (2013). Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. Journal of Psychiatric Research, 47, 880–891.PubMedGoogle Scholar
  67. Hopp, H., Troy, A. S., & Mauss, I. B. (2011). The unconscious pursuit of emotion regulation: implications for psychological health. Cognition and Emotion, 25, 532–545.PubMedGoogle Scholar
  68. Horga, G., & Maia, T. V. (2012). Conscious and unconscious processes in cognitive control: a theoretical perspective and a novel empirical approach. Frontiers in Human Neuroscience, 6, 199.PubMedPubMedCentralGoogle Scholar
  69. Hussain, N. (2012). Epigenetic influences that modulate infant growth, development, and disease. Antioxidants & Redox Signaling, 17, 224–236.Google Scholar
  70. Imani, S., Panahi, Y., Salimian, J., et al. (2015). Epigenetic: a missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iranian Journal of Basic Medical Sciences, 18, 723–736.PubMedPubMedCentralGoogle Scholar
  71. Jobe, E. M., & Zhao, X. (2017). DNA methylation and adult neurogenesis. Brain Plastic, 3, 5–26.Google Scholar
  72. Juruena, M. F. (2014). Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy & Behavior, 38, 148–159.Google Scholar
  73. Kagan, K. O., Sonek, J., Wagner, P., & Hoopmann, M. (2017). Principles of first trimester screening in the age of non-invasive prenatal diagnosis: screening for chromosomal abnormalities. Archives of Gynecology and Obstetrics, 296, 645–651.PubMedGoogle Scholar
  74. Kanherkar, R. R., Bhatia-Dey, N., Makarev, E., & Csoka, A. B. (2014). Cellular reprogramming for understanding and treating human disease. Frontiers in Cell and Development Biology, 2, 67.Google Scholar
  75. Kertes, D. A., Kamin, H. S., Hughes, D. A., Rodney, N. C., Bhatt, S., & Mulligan, C. J. (2016). Prenatal maternal stress predicts methylation of genes regulating the hypothalamic–pituitary–adrenocortical system in mothers and newborns in the Democratic Republic of Congo. Child Development, 87, 61–72.PubMedPubMedCentralGoogle Scholar
  76. Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage, 20, 2091–2099.PubMedGoogle Scholar
  77. Kim, S., & Kaang, B. K. (2017). Epigenetic regulation and chromatin remodeling in learning and memory. Experimental & Molecular Medicine, 49, e281.Google Scholar
  78. Klengel, T., Dias, B. G., & Ressler, K. J. (2016). Models of intergenerational and transgenerational transmission of risk for psychopathology in mice. Neuropsychopharmacology, 41, 219–231.PubMedGoogle Scholar
  79. van Klink, J. M., van Steenis, A., Steggerda, S. J., et al. (2015). Single fetal demise in monochorionic pregnancies: incidence and patterns of cerebral injury. Ultrasound in Obstetrics & Gynecology, 45(3), 294–300.Google Scholar
  80. Koole, S. L., & Rothermund, K. (2011). “I feel better but I don’t know why”: the psychology of implicit emotion regulation. Cognition and Emotion, 25, 389–399.PubMedGoogle Scholar
  81. Kornhuber, H. H., & Deecke, L. (1965). Hirnpotentialänderungen bei willkürbewegungen und passiven bewegungen des menschen: Bereitschaftspotential und reafferente potentiale. Pflüglers Arch für die gesamte. Phys des Menschen u der Tiere, 284, 1–17.Google Scholar
  82. Kubota, T. (2016). Epigenetic effect of environmental factors on neurodevelopmenal disorders. Nihon Eiseigaku Zasshi, 71, 200–207.PubMedGoogle Scholar
  83. Landy, H. J., & Keith, L. G. (1998). The vanishing twin: a review. Human Reproduction Update, 4, 177–183.PubMedGoogle Scholar
  84. Landy, H. J., Weiner, S., Corson, S. L., & Batzer, F. R. (1986). The “vanishing twin”: ultrasonographic assessment of fetal disappearance in the first trimester. American Journal of Obstetrics and Gynecology, 155, 14–19.PubMedGoogle Scholar
  85. Larriba, E., & del Mazo, J. (2016). Role of non-coding RNAs in the transgenerational epigenetic transmission of the effects of reprotoxicants. International Journal of Molecular Sciences, 17, 452.PubMedPubMedCentralGoogle Scholar
  86. Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activities (readiness-potential): the unconscious initiation of a freely voluntary act. Brain, 106, 623–642.PubMedGoogle Scholar
  87. Lo, Y. M., Corbetta, N., Chamberlain, P. F., et al. (1997). Presence of fetal DNA in maternal plasma and serum. Lancet, 350, 485–487.Google Scholar
  88. Lo, Y. M., Tein, M. S., Lau, T. K., et al. (1998). Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. American Journal of Human Genetics, 62, 768–775.PubMedPubMedCentralGoogle Scholar
  89. Lopriore, E., Nagel, H. T., Vandenbussche, F. P., & Walther, F. J. (2003). Long-term neurodevelopmental outcome in twin-to-twin transfusion syndrome. American Journal of Obstetrics and Gynecology, 189(5), 1314–1319.PubMedGoogle Scholar
  90. Loscalzo, J., & Handy, D. E. (2014). Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulmonary Circulation, 4, 169–174.PubMedPubMedCentralGoogle Scholar
  91. Ludmer, R., Dudai, Y., & Rubin, N. (2011). Uncovering camouflage: amygdala activation predicts long-term memory of induced perceptual insight. Neuron, 69, 1002–1014.PubMedPubMedCentralGoogle Scholar
  92. Magnus, M. C., Ghaderi, S., Morken, N. H., et al. (2017). Vanishing twin syndrome among ART singletons and pregnancy outcomes. Human Reproduction, 32(11), 2298–2304.PubMedGoogle Scholar
  93. Mansell, T., Novakovic, B., Meyer, B., Rzehak, P., Vuillermin, P., Ponsonby, A. L., Collier, F., Burgner, D., Saffery, R., Ryan, J., & BIS investigator team. (2016). The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Translational Psychiatry, 6, e765.PubMedPubMedCentralGoogle Scholar
  94. Mansour, R., Serour, G., Aboulghar, M., et al. (2010). The impact of vanishing fetuses on the outcome of ICSI pregnancies. Fertility and Sterility, 94, 2430–2432.PubMedGoogle Scholar
  95. Márton, V., Zádori, J., Kozinszky, Z., & Keresztúri, A. (2016). Prevalences and pregnancy outcome of vanishing twin pregnancies achieved by in vitro fertilization versus natural conception. Fertility and Sterility, 106(6), 1399–1406.PubMedGoogle Scholar
  96. McGaugh, J. L., & Roozendaal, B. (2002). Role of adrenal stress hormones in the forming of lasting memories in the brain. Current Opinion in Neurobiology, 12, 205–210.PubMedGoogle Scholar
  97. Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 1161–1192.PubMedGoogle Scholar
  98. Merlot, E., Couret, D., & Otten, W. (2008). Prenatal stress, fetal imprinting and immunity. Brain, Behavior, and Immunity, 22, 42–51.PubMedGoogle Scholar
  99. Mishra, B. B., Mishra, P. K., & Teale, J. M. (2006). Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. Journal of Neuroimmunology, 81, 46–56.Google Scholar
  100. Mittra, I., Khare, N. K., Raghuram, G. V., et al. (2015). Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. Journal of Biosciences, 40(1), 91–111.PubMedPubMedCentralGoogle Scholar
  101. Moosavi, A., & Motevalizadeh Ardekani, A. (2016). Role of epigenetics in biology and human diseases. Iranian Biomedical Journal, 20, 246–258.PubMedPubMedCentralGoogle Scholar
  102. Morris, M. C., Ciesla, J. A., & Garber, J. (2010). A prospective study of stress autonomy versus stress sensitization in adolescents at varied risk for depression. Journal of Abnormal Psychology, 119, 341–354.PubMedPubMedCentralGoogle Scholar
  103. Murao, N., Noguchi, H., & Nakashima, K. (2016). Epigenetic regulation of neural stem cell property from embryo to adult. Neuroepigenetics, 5, 1–10.Google Scholar
  104. Nederhof, E., & Schmidt, M. V. (2012). Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiology & Behavior, 106, 691–700.Google Scholar
  105. Niitsu, K., Houfek, J. F., Barron, C. R., et al. (2017). A concept analysis of resilience integrating genetics. Issues in Mental Health Nursing, 38, 896–906.PubMedGoogle Scholar
  106. Niles, K. M., Murji, A., & Chitayat, D. (2018). Prolonged duration of persistent cell-free fetal DNA from vanishing twin. Ultrasound in Obstetrics & Gynecology, 52, 547–548. Scholar
  107. Nishimoto, S., Fukuda, D., Higashikuni, Y., et al. (2016). Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Science Advances, 2, e1501332.PubMedPubMedCentralGoogle Scholar
  108. Okamura, K., Murotsuki, J., Tanigawara, S., et al. (1994). Funipuncture for evaluation of hematologic and coagulation indices in the surviving twin following co-twin's death. Obstetrics and Gynecology, 83, 975–978.PubMedGoogle Scholar
  109. Ong, S. S., Zamora, J., Khan, K. S., & Kilby, M. D. (2006). Prognosis for the co-twin following single-twin death: a systematic review. BJOG, 113(9), 992–998.PubMedGoogle Scholar
  110. Perez, O., Mukamel, R., Tankus, A., et al. (2015). Preconscious prediction of a driver’s decision using intracranial recordings. Journal of Cognitive Neuroscience, 27, 1492–1502.PubMedGoogle Scholar
  111. Pharoah, P. O., & Cooke, R. W. (1997). A hypothesis for the aetiology of spastic cerebral palsy--the vanishing twin. Developmental Medicine and Child Neurology, 39(5), 292–296.PubMedGoogle Scholar
  112. Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14, 198–202.PubMedGoogle Scholar
  113. Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48, 175–187.Google Scholar
  114. Phillippe, M., & Adeli, S. (2017). Cell-free DNA release by mouse placental explants. PLoS One, 12, e0178845.PubMedPubMedCentralGoogle Scholar
  115. Pishva, E., Drukker, M., Viechtbauer, W., Decoster, J., Collip, D., van Winkel, R., Wichers, M., Jacobs, N., Thiery, E., Derom, C., Geschwind, N., van den Hove, D., Lataster, T., Myin-Germeys, I., van Os, J., Rutten, B. P., & Kenis, G. (2014). Epigenetic genes and emotional reactivity to daily life events: a multi-step gene-environment interaction study. PLoS One, 9(6), e100935.PubMedPubMedCentralGoogle Scholar
  116. Reuven, E. M., Fink, A., & Shai, Y. (2014). Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochimica et Biophysica Acta, 1838, 1586–1593.PubMedGoogle Scholar
  117. Rigoni, D., Kühn, S., Sartori, G., & Brass, M. (2011). Inducing disbelief in free will alters brain correlates of preconscious motor preparation: The brain minds whether we believe free will or not. Psychological Science, 22, 613–618.PubMedGoogle Scholar
  118. Rolls, E. T., & Deco, G. (2011). Prediction of decisions from noise in the brain before the evidence is provided. Frontiers in Neuroscience, 5, 33.PubMedPubMedCentralGoogle Scholar
  119. Rossi, E. L. (2009). The psychosocial genomics of therapeutic hypnosis, psychotherapy, and rehabilitation. The American Journal of Clinical Hypnosis, 51, 281–298.PubMedGoogle Scholar
  120. Rossi, E., Iannotti, S., Cozzolino, M., et al. (2008). A pilot study of positive expectations and focused attention via a new protocol for optimizing therapeutic hypnosis and psychotherapy assessed with DNA microarrays: the creative psychosocial genomic healing experience. Sleep Hypnosis, 10, 39–44.Google Scholar
  121. Sadeh, N., Wolf, E. J., Logue, M. W., et al. (2016). Epigenetic variation at ska2 predicts suicide phenotypes and internalizing psychopathology. Depression and Anxiety, 33, 308–315.PubMedPubMedCentralGoogle Scholar
  122. Segal, N. L. (2009). Twin loss: the annual convention/twin research reviews: childhood empathy; hormone replacement therapy and skeletal muscle; multiple birth conception in older women/twins in the media: twins with kidney disease; a pair of poets; the other twins in the metrodome. Twin Research and Human Genetics, 12, 519–522.PubMedGoogle Scholar
  123. Shea, J. L., Diamandis, E. P., Hoffman, B., et al. (2013). A new era in prenatal diagnosis: the use of cell-free fetal DNA in maternal circulation for detection of chromosomal aneuploidies. Clinical Chemistry, 59, 1151–1159.PubMedGoogle Scholar
  124. Sirigu, A., Daprati, E., Ciancia, S., et al. (2004). Altered awareness of voluntary action after damage to the parietal cortex. Nature Neuroscience, 7, 80–84.PubMedGoogle Scholar
  125. Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscios determinants of free decisions in the human brain. Nature Neuroscience, 11, 543–545.PubMedGoogle Scholar
  126. Soon, C. S., He, A. H., Bode, S., & Haynes, J. D. (2013). Predicting free choices for abstract intentions. PNAS USA, 110, 6217–6222.PubMedGoogle Scholar
  127. Southwick, S. M., Bonanno, G. A., Masten, A. S., et al. (2014). Resilience definitions, theory, and challenges: interdisciplinary perspectives. European Journal of Psychotraumatology, 1, 5.Google Scholar
  128. Sperling, L., & Tabor, A. (2001). Twin pregnancy: the role of ultrasound in management. Acta Obstetricia et Gynecologica Scandinavica, 80, 287–299.Google Scholar
  129. Stabile, I., Campbell, S., & Grudzinskas, J. G. (1987). Ultrasonic assessment of complications during the first trimester of pregnancy. Lancet, 2, 1237–1240.PubMedGoogle Scholar
  130. St-Cyr, S., & McGowan, P. O. (2015). Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Frontiers in Behavioral Neuroscience, 9, 145.PubMedPubMedCentralGoogle Scholar
  131. Stoeckel, W. (1945). Lehbuch der Geburtschilfe. Jena: Gustav Fischer (Quoted in Levi, 1976).Google Scholar
  132. Sylwester, R. (2000). Unconscious emotions, conscious feelings. The Science of Learning, 58, 20–24.Google Scholar
  133. Szőke, H., Bókkon, I., Kapócs, G., et al. (2018). Assisted reproductive technology: stress-related epigenetic and neurodevelopmental risk? Activitas Nervosa Superior, 60, 95–106.Google Scholar
  134. Tamir, M., Ford, B. Q., & Ryan, E. (2013). Nonconscious goals can shape what people want to feel. Journal of Experimental Social Psychology, 49, 292–297.PubMedPubMedCentralGoogle Scholar
  135. Thomas, M. R., Tutschek, B., Frost, A., et al. (1995). The time of appearance and disappearance of fetal DNA from the maternal circulation. Prenatal Diagnosis, 15, 641–646.PubMedGoogle Scholar
  136. Tiffon, C. (2018). The impact of nutrition and environmental epigenetics on human health and disease. International Journal of Molecular Science, 19(11). Scholar
  137. Vas, J. P., & Császár, N. (2011). Transnatal tandem hypnotherapy (TTH): a new method for resolving prenatal traumas. International Journal of Psychotherapy, 15, 55–64.Google Scholar
  138. Viserman, A. M. (2015). Epigenetic programming by early-life stress: evidence from human populations. Developmental Dynamics, 244, 254–265.Google Scholar
  139. Wadhwa, P. D. (2005). Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology, 30, 724–743.PubMedGoogle Scholar
  140. Walsh, C. A. (2015). Early 2nd trimester fetal demise in a monochorionic twin pregnancy: a cautionary tale. Australasian Society for Ultrasound in Medicine, 18, 78–81.Google Scholar
  141. Williams, L. E., Bargh, J. A., Nocera, C. C., & Gray, J. R. (2009). The unconscious regulation of emotion: nonconscious reappraisal goals modulate emotional reactivity. Emotion, 9, 847–854.PubMedPubMedCentralGoogle Scholar
  142. Wolf, I. A., Gilles, M., Peus, V., et al. (2018). Impact of prenatal stress on mother-infant dyadic behavior during the still-face paradigm. Borderline Personality Disorder and Emotion Dysregulation, 5, 2.PubMedPubMedCentralGoogle Scholar
  143. Woodward, J. (1998). The lone twin: understanding twin bereavement and loss. London: Free Association Books.Google Scholar
  144. Zannas, A. S., & West, A. E. (2014). Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience, 264, 157–170.PubMedGoogle Scholar
  145. Zhou, L., Gao, X., Wu, Y., & Zhang, Z. (2016). Analysis of pregnancy outcomes for survivors of the vanishing twin syndrome after in vitro fertilization and embryo transfer. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 203, 35–39.PubMedGoogle Scholar
  146. Zimmer, C., Larriva, M., Boogert, N. J., & Spencer, K. A. (2017). Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Scientific Reports, 7, 46125.PubMedPubMedCentralGoogle Scholar

Copyright information

© Neuroscientia 2019

Authors and Affiliations

  1. 1.National University of Public ServicesBudapestHungary
  2. 2.Psychosomatic Outpatient ClinicsBudapestHungary
  3. 3.Neuroscience and Consciousness Research DepartmentVision Research InstituteLowellUSA

Personalised recommendations