Stabilizing the unstable output of persistent homology computations

  • Paul Bendich
  • Peter BubenikEmail author
  • Alexander Wagner


We propose a general technique for extracting a larger set of stable information from persistent homology computations than is currently done. The persistent homology algorithm is usually viewed as a procedure which starts with a filtered complex and ends with a persistence diagram. This procedure is stable (at least to certain types of perturbations of the input). This justifies the use of the diagram as a signature of the input, and the use of features derived from it in statistics and machine learning. However, these computations also produce other information of great interest to practitioners that is unfortunately unstable. For example, each point in the diagram corresponds to a simplex whose addition in the filtration results in the birth of the corresponding persistent homology class, but this correspondence is unstable. In addition, the persistence diagram is not stable with respect to other procedures that are employed in practice, such as thresholding a point cloud by density. We recast these problems as real-valued functions which are discontinuous but measurable, and then observe that convolving such a function with a suitable function produces a Lipschitz function. The resulting stable function can be estimated by perturbing the input and averaging the output. We illustrate this approach with a number of examples, including a stable localization of a persistent homology generator from brain imaging data.


Topological data analysis Persistent homology Stability Critical points Convolution Lipschitz 

Mathematics Subject Classification

55N99 62H99 57R70 



The authors would like to thank Justin Curry, Francis Motta, Chris Tralie, and Ulrich Bauer for helpful conversations. The first author would like to thank the University of Florida for hosting him during the initial phase of this research.

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Adams, H., Atanasov, A., Carlsson, G.: Nudged elastic band in topological data analysis. Topol. Methods Nonlinear Anal. 45(1), 247–272 (2015)MathSciNetCrossRefGoogle Scholar
  2. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)MathSciNetzbMATHGoogle Scholar
  3. Ahmed, M., Fasy, B.T., Wenk, C.: Local persistent homology based distance between maps. In: SIGSPATIAL. ACM (2014)Google Scholar
  4. Bauer, U.: Ripser: a lean C++ code for the computation of vietoris–rips persistence barcodes (2017). Software available at
  5. Bendich, P., Chin, S.P., Clark, J., Desena, J., Harer, J., Munch, E., Newman, A., Porter, D., Rouse, D., Strawn, N., Watkins, A.: Topological and statistical behavior classifiers for tracking applications. IEEE Trans. Aerosp. Electr. Syst. 52(6), 2644–2661 (2016a)CrossRefGoogle Scholar
  6. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016b)MathSciNetCrossRefGoogle Scholar
  7. Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)MathSciNetCrossRefGoogle Scholar
  8. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015)MathSciNetzbMATHGoogle Scholar
  9. Bubenik, P., Carlsson, G., Kim, P.T., Luo, Z.M.: Statistical topology via Morse theory persistence and nonparametric estimation. Algebraic Methods in Statistics and Probability II. In: Viana, M.A.G., Wynn, H.P. (eds.) Contemporary Mathematics, vol. 516, pp. 75–92. American Mathematical Society, Providence, RI (2010)Google Scholar
  10. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  11. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vision 76(1), 1–12 (2008)MathSciNetCrossRefGoogle Scholar
  12. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008). MathSciNetCrossRefGoogle Scholar
  13. Carriere, M., Oudot, S.Y., Ovsjanikov, M.: Stable topological signatures for points on 3d shapes. In: Proceedings Symposium on Geometry Processing (2015)CrossRefGoogle Scholar
  14. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the 25th Annual Symposium on Computational Geometry, SCG ’09, pp. 237–246. ACM, New York, NY, USA (2009).
  15. Chazal, F., Cohen-Steiner, D., Mérigot, Q.: Geometric inference for measures based on distance functions. Found. Comput. Math. 11(6), 733–751 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  16. Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Singh, A., Wasserman, L.: On the bootstrap for persistence diagrams and landscapes. Model. Anal. Inf. Syst. 20(6), 96–105 (2014)Google Scholar
  17. Chazal, F., Fasy, B.T., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L.: Subsampling methods for persistent homology. In: Proceedings of the 32nd International Conference on Machine Learning, Lille, France, vol. 37. JMLR, W&CP (2015a)Google Scholar
  18. Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. J. Comput. Geom. 6(2), 140–161 (2015b)MathSciNetzbMATHGoogle Scholar
  19. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. Springer Briefs in Mathematics. Springer, Cham (2016)CrossRefGoogle Scholar
  20. Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L.: Robust topological inference: distance to a measure and kernel distance. J. Mach. Learn. Res. 18, 40 (2017)MathSciNetzbMATHGoogle Scholar
  21. Chen, Y.C., Genovese, C.R., Wasserman, L.: Statistical inference using the Morse-Smale complex. Electron. J. Stat. 11(1), 1390–1433 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  22. Chen, Y.C., Wang, D., Rinaldo, A., Wasserman, L.: Statistical analysis of persistence intensity functions. ArXiv e-prints (2015)Google Scholar
  23. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams in cortical surface data. In: Information Processing in Medical Imaging (IPMI) 2009, Lecture Notes in Computer Science, vol. 5636, pp. 386–397 (2009)Google Scholar
  24. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  25. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009)MathSciNetCrossRefGoogle Scholar
  26. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \(l_p\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  27. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Computational geometry (SCG’06), pp. 119–126. ACM, New York (2006)Google Scholar
  28. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Eurographics Symposium on Point-Based Graphics (2004)Google Scholar
  29. Dey, T.K., Fan, F., Wang, Y.: Graph induced complex on point data. In: Proceedings of the Twenty-ninth Annual Symposium on Computational Geometry, SoCG ’13, pp. 107–116. ACM, New York, NY, USA (2013)Google Scholar
  30. Dey, T.K., Wenger, R.: Stability of critical points with interval persistence. Discrete Comput. Geom. 38(3), 479–512 (2007)MathSciNetCrossRefGoogle Scholar
  31. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  32. Edelsbrunner, H., Harer, J.L.: Computational Topology. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  33. Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets for persistence diagrams. Ann. Statist. 42(6), 2301–2339 (2014)MathSciNetCrossRefGoogle Scholar
  34. Fremlin, D.: Measure Theory, vol. 4. Torres Fremlin, London (2000)zbMATHGoogle Scholar
  35. Frozini, P., Landi, B.: Size theory as a topological tool for computer vision. Pattern Recognit. Image Anal. 9, 596–603 (1999)Google Scholar
  36. Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mischaikow, K., Nanda, V.: A topological measurement of protein compressibility. Jpn. J. Ind. Appl. Math. 32(1), 1–17 (2015)MathSciNetCrossRefGoogle Scholar
  37. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. (N.S.) 45(1), 61–75 (2008)MathSciNetCrossRefGoogle Scholar
  38. Kovacev-Nikolic, V., Bubenik, P., Nikolić, D., Heo, G.: Using persistent homology and dynamical distances to analyze protein binding. Stat. Appl. Genet. Mol. Biol. 15(1), 19–38 (2016)MathSciNetCrossRefGoogle Scholar
  39. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2003–2010 (2014)Google Scholar
  40. Morozov, D.: Dionysus: a C++ library with various algorithms for computing persistent homology (2012). Software available at
  41. Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., Harer, J., et al.: Probabilistic fréchet means for time varying persistence diagrams. Electr. J. Stat. 9, 1173–1204 (2015)CrossRefGoogle Scholar
  42. Munkres, J.R.: Elements of Algebraic Topology. Addison Wesley, Boston (1993)zbMATHGoogle Scholar
  43. Nanda, V.: Perseus: the persistent homology software (2013). Software available at
  44. Niyogi, P., Smale, S., Weinberger, S.: A topological view of unsupervised learning from noisy data. SIAM J. Comput. 40(3), 646–663 (2011)MathSciNetCrossRefGoogle Scholar
  45. Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis. Mathematical Surveys and Monographs, vol. 209. American Mathematical Society, Providence (2015)Google Scholar
  46. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: Proceeding CVPR pp. 4741–4748 (2015)Google Scholar
  47. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986)CrossRefGoogle Scholar
  48. Smith, A., Bendich, P., Harer, J., Hineman, J.: Supervised learning of labeled pointcloud differences via cover-tree entropy reduction (2017). arXiv preprint arXiv:1702.07959
  49. Wand, M.P., Jones, M.C.: Kernel Smoothing, Monographs on Statistics and Applied Probability, vol. 60. Chapman and Hall Ltd, London (1995)Google Scholar
  50. Weinberger, S.: The complexity of some topological inference problems. Found. Comput. Math. 14(6), 1277–1285 (2014)MathSciNetCrossRefGoogle Scholar
  51. Zomorodian, A., Carlsson, G.: Localized homology. Comput. Geom. 41(3), 126–148 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsDuke University, and Geometric Data Analytics, Inc.DurhamUSA
  2. 2.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations