Journal of Applied and Computational Topology

, Volume 3, Issue 4, pp 381–422 | Cite as

On the geometrical properties of the coherent matching distance in 2D persistent homology

  • Andrea Cerri
  • Marc Ethier
  • Patrizio FrosiniEmail author


In this paper we study a new metric for comparing Betti numbers functions in bidimensional persistent homology, based on coherent matchings, i.e. families of matchings that vary in a continuous way. We prove some new results about this metric, including a property of stability. In particular, we show that the computation of this distance is strongly related to suitable filtering functions associated with lines of slope 1, so underlining the key role of these lines in the study of bidimensional persistence. In order to prove these results, we introduce and study the concepts of extended Pareto grid for a normal filtering function as well as of transport of a matching. As a by-product, we obtain a theoretical framework for managing the phenomenon of monodromy in 2D persistent homology.


Multidimensional persistence Jacobi set Extended Pareto grid Coherent transport of a matching Persistent monodromy group 

Mathematics Subject Classification

Primary 55N35 Secondary 57R19 65D18 68U05 



Work carried out under the auspices of INdAM-GNSAGA. M.E. has been partially supported by the Toposys project FP7-ICT-318493-STREP, as well as an ESF Short Visit Grant under the Applied and Computational Algebraic Topology networking programme. He would like to acknowledge his former employers, the Université de Saint-Boniface in Winnipeg, Canada, and Champlain–Saint-Lawrence College in Québec, Canada, for work on this paper done during his employment. A.C. has been partially supported by the FP7 Integrated Project IQmulus, FP7-ICT-2011–318787, and the H2020 Project Gravitate, H2020-REFLECTIVE-7-2014-665155. The authors are grateful to Claudia Landi for her valuable advice. This paper is dedicated to the memory of Ola Mouaffek Shihab Eddin, Naya Raslan and Abish Masih.


  1. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)MathSciNetCrossRefGoogle Scholar
  2. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D.: A new algorithm for computing the 2-dimensional matching distance between size functions. Pattern Recogn. Lett. 32(14), 1735–1746 (2011)CrossRefGoogle Scholar
  3. Bjerkevik, H.B.: Stability of higher-dimensional interval decomposable persistence modules. ArXiv e-prints (2016). arXiv:1609.02086
  4. Bjerkevik, H.B., Botnan, M.B.: Computational complexity of the interleaving distance. In: Speckmann, B., Tóth, C.D.(eds.) 34th International Symposium on Computational Geometry (SoCG 2018), Leibniz International Proceedings in Informatics (LIPIcs), pp. 13:1–13:15. Dagstuhl, Germany (2018). Schloss Dagstuhl–Leibniz-Zentrum fuer InformatikGoogle Scholar
  5. Bjerkevik, H.B., Botnan, M.B., Kerber, M.: Computing the interleaving distance is NP-hard. CoRR (2018). arXiv:1811.09165
  6. Botnan, M.B., Lesnick, M.: Algebraic stability of zigzag persistence modules. Algebr. Geom. Topol. 18(6), 3133–3204 (2018)MathSciNetCrossRefGoogle Scholar
  7. Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Am. Math. Soc. 138(8), 3003–3017 (2010)MathSciNetCrossRefGoogle Scholar
  8. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)MathSciNetCrossRefGoogle Scholar
  9. Carlsson, G., Singh, G., Zomorodian, A.: Computing multidimensional persistence. In: Dong, Y., Du, D.-Z., Ibarra, O.H. (eds) ISAAC, volume 5878 of Lecture Notes in Computer Science, pp. 730–739. Springer (2009)Google Scholar
  10. Cerri, A., Frosini, P.: Necessary conditions for discontinuities of multidimensional persistent Betti numbers. Math. Methods Appl. Sci. 38(4), 617–629 (2015)MathSciNetCrossRefGoogle Scholar
  11. Cerri, A., Frosini, P.: A new approximation algorithm for the matching distance in multidimensional persistence. J. Comput. Math. (2019). (To appear)CrossRefGoogle Scholar
  12. Cerri, A., Landi, C.: Hausdorff stability of persistence spaces. Found. Comput. Math. 16(2), 343–367 (2016)MathSciNetCrossRefGoogle Scholar
  13. Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013a)MathSciNetCrossRefGoogle Scholar
  14. Cerri, A., Ethier, M., Frosini, P.: A study of monodromy in the computation of multidimensional persistence. In: Proceedings of the 17th IAPR International Conference on Discrete Geometry for Computer Imagery, Seville, Spain, 20–22 Mar 2013. Lecture Notes in Computer Science, vol. 7749, pp. 192–202 (2013b)CrossRefGoogle Scholar
  15. Cerri, A., Ethier, M., Frosini, P.: The coherent matching distance in 2d persistent homology. In: Bac, A., Mari, J.-L. (eds.) Proceedings of the 6th International Workshop on Computational Topology in Image Context, Marseille, France, 15–17 June 2016. Lecture Notes in Computer Science, vol. 9667, pp. 216–227. Springer International Publishing Switzerland (2016)Google Scholar
  16. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.L.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetCrossRefGoogle Scholar
  17. d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size functions. Acta Appl. Math. 109(2), 527–554 (2010)MathSciNetCrossRefGoogle Scholar
  18. Dey, T.K., Xin, C.: Computing bottleneck distance for 2-D interval decomposable modules. In: Speckmann, B., Tóth, C.D. (eds.) 34th International Symposium on Computational Geometry (SoCG 2018), Leibniz International Proceedings in Informatics (LIPIcs), pp. 32:1–32:15. Dagstuhl, Germany (2018). Schloss Dagstuhl–Leibniz-Zentrum fuer InformatikGoogle Scholar
  19. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Foundations of Computational Mathematics: Minneapolis, 2002, volume 312 of London Mathematical Society Lecture Note Series, pp. 37–57. Cambridge University Press, Cambridge (2004)Google Scholar
  20. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European Congress of Mathematics, pp. 31–50. European Mathematical Society, Zürich (2013)Google Scholar
  21. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MathSciNetCrossRefGoogle Scholar
  22. Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Eng. Commun. Comput. 12(4), 327–349 (2001)MathSciNetCrossRefGoogle Scholar
  23. Frosini, P., Mulazzani, M.: Size homotopy groups for computation of natural size distances. Bull. Belg. Math. Soc. Simon Stevin 6(3), 455–464 (1999)MathSciNetzbMATHGoogle Scholar
  24. Kerber, M., Lesnick, M., Oudot, S.: Exact computation of the matching distance on 2-parameter persistence modules. In: Barequet, G., Wang, Y. (eds.) 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), pp. 46:1–46:15. Dagstuhl, Germany (2019). Schloss Dagstuhl–Leibniz-Zentrum fuer InformatikGoogle Scholar
  25. Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)MathSciNetCrossRefGoogle Scholar
  26. Lesnick, M., Wright, M.: Interactive visualization of 2-D persistence modules. ArXiv e-prints (2015). arXiv:1512.00180
  27. Wan, Y.H.: Morse theory for two functions. Topology 14(3), 217–228 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FST - Fom Software TechnologyCattolica (RN)Italy
  2. 2.UER en sciences de l’éducationUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  3. 3.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations