Advertisement

Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Conflict-Related Behavioral Performance and Frontal Midline Theta Activity

  • Marius Keute
  • Daniel Barth
  • Matthias Liebrand
  • Hans-Jochen Heinze
  • Ulrike Kraemer
  • Tino ZaehleEmail author
Original Research
  • 10 Downloads

Abstract

Several previous studies have highlighted the potential of transcutaneous vagus nerve stimulation (tVNS) to enhance executive control of action. In the present study, we tested for effects of tVNS on behavioral performance and frontal midline theta activity during response conflicts. Frontal midline theta reflects transient activation of the posterior midfrontal cortex in situations requiring increased executive control of action. It is an established marker for top-down action control. We carried out a combined behavioral and electroencephalography (EEG) within-subjects experimental study employing a cued go–no-go-change task. Twenty-two healthy young adults participated. We found that tVNS enhanced global behavioral accuracy, i.e., decreased the proportion of erroneous and missed responses, compared with sham (placebo) stimulation, and reduced conflict costs on behavioral performance in go/change response conflicts. Furthermore, in trials eliciting go/stop conflicts, frontal midline theta was enhanced under tVNS. These findings corroborate the potential of tVNS to enhance executive control of action. For the first time, we show an effect of tVNS on frontal midline theta activity, which suggests that tVNS specifically interacts with the neural mechanisms underlying action control. We conclude that tVNS is a promising method to enhance executive control and recommend the further investigation of tVNS as a candidate treatment of clinically relevant executive control deficits.

Keywords

tVNS EEG Executive control Response conflict Frontal midline theta 

Notes

Funding information

The work was funded by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich Grant, SFB-779, TPA02, and the federal state of Saxony-Anhalt and the “European Regional Development Fund“ (ERDF 2014-2020), Vorhaben: Center for Behavioral Brain Sciences (CBBS), FKZ: ZS/2016/04/78113.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

41465_2019_152_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1728 kb)

References

  1. Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29–32.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.CrossRefGoogle Scholar
  4. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68(3), 255–278.CrossRefGoogle Scholar
  5. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 48.CrossRefGoogle Scholar
  6. Bauer, S., Baier, H., Baumgartner, C., Bohlmann, K., Fauser, S., Graf, W., et al. (2016). Transcutaneous Vagus Nerve Stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimulation, 9(3), 356–363.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baumeister, R. F. (2002). Ego depletion and self-control failure: an energy model of the self’s executive function. Self and Identity, 1(2), 129–136.CrossRefGoogle Scholar
  8. Ben-Menachem, E., Hamberger, A., Hedner, T., Hammond, E. J., Uthman, B. M., Slater, J., et al. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Research, 20(3), 221–227.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bermejo, P., López, M., Larraya, I., Chamorro, J., Cobo, J. L., Ordóñez, S., et al. (2017). Innervation of the human cavum conchae and auditory canal: anatomical basis for transcutaneous auricular nerve stimulation. BioMed Research International, 2017, 7830919.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beste, C., Steenbergen, L., Sellaro, R., Grigoriadou, S., Zhang, R., Chmielewski, W., et al. (2016). Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control ??? A Study Using Transcutaneous Vagus Nerve Stimulation. Brain Stimulation, 9(6), 811–818.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Borovikova, L.V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G.I., Watkins, L.R., et al. (2000). Vagus nerve stimulation attenuates the systemic in¯ammatory response to endotoxin. 405, 5.Google Scholar
  12. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539–546.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Broncel, A., Bocian, R., Kłos-Wojtczak, P., & Konopacki, J. (2018). Medial septal cholinergic mediation of hippocampal theta rhythm induced by vagal nerve stimulation. PLoS ONE, 13(11), e0206532.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Broncel, A., Bocian, R., Kłos-Wojtczak, P., & Konopacki, J. (2019). GABAergic mediation of hippocampal theta rhythm induced by stimulation of the vagal nerve. Brain Research Bulletin, 147, 110–123.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brown, T. E., & Landgraf, J. M. (2010). Improvements in executive function correlate with enhanced performance and functioning and health-related quality of life: evidence from 2 large, double-blind, randomized, placebo-controlled trials in ADHD. Postgraduate Medicine, 122(5), 42–51.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Capone, F., Assenza, G., Di Pino, G., Musumeci, G., Ranieri, F., Florio, L., et al. (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. Journal of Neural Transmission, 122(5), 679–685.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology, Paris, 109(1), 3–15.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage., 49(4), 3198–3209.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal Theta Overrides Pavlovian Learning Biases. The Journal of Neuroscience, 33(19), 8541–8548.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chakravarthy, K., Chaudhry, H., Williams, K., & Christo, P. J. (2015). Review of the uses of vagal nerve stimulation in chronic pain management. Current Pain and Headache Reports, 19(12), 54.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cohen, M. X. (2014). A neural microcircuit for cognitive conflict detection and signaling. Trends in Neurosciences, 37(9), 480–490.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–2763.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cotrena, C., Branco, L. D., Shansis, F. M., & Fonseca, R. P. (2016). Executive function impairments in depression and bipolar disorder: association with functional impairment and quality of life. Journal of Affective Disorders, 190, 744–753.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Fischer, R., Ventura-Bort, C., Hamm, A., & Weymar, M. (2018a Aug). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 18(4), 680–693.CrossRefGoogle Scholar
  27. Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C., & Ullsperger, M. (2018b). Cortical beta power reflects decision dynamics and uncovers multiple facets of post-error adaptation. Nature Communications, 9(1), 5038.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulation, 8(3), 624–636.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–501.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Frömer, R., Maier, M., & Rahman, R. A. (2018). Group-level EEG-processing pipeline for flexible single trial-based analyses including linear mixed models. Frontiers in Neuroscience, 12, 48.Google Scholar
  31. Gevins, A. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374–385.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Greene, J. D., Hodges, J. R., & Baddeley, A. D. (1995). Autobiographical memory and executive function in early dementia of Alzheimer type. Neuropsychologia, 33(12), 1647–1670.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation: Frontal theta and N200 provide distinct information. Psychophysiology., 50(6), 550–562.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hall, S.D., Barnes, G.R., Furlong, P.L., Seri, S., Hillebrand, A. (2009). Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmaco-magnetoencephalography. Human Brain Mapping, n/a–n/a.Google Scholar
  35. Hein, E., Nowak, M., Kiess, O., Biermann, T., Bayerlein, K., Kornhuber, J., et al. (2013). Auricular transcutaneous electrical nerve stimulation in depressed patients: A randomized controlled pilot study. Journal of Neural Transmission, 120(5), 821–827.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174–180.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hornberger, M., Piguet, O., Kipps, C., & Hodges, J. R. (2008). Executive function in progressive and nonprogressive behavioral variant frontotemporal dementia. Neurology, 71(19), 1481–1488.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hsieh, L.-T., Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85(0 2). [cited 2019 Apr 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859771/.
  39. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Jaeger, T. F. (2008). Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Keute, M., Ruhnau, P., Heinze, H.-J., Zaehle, T. (2018a). Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clinical Neurophysiology.Google Scholar
  42. Keute, M., Ruhnau, P., & Zaehle, T. (2018b). Reply to “Reconsidering sham in transcutaneous vagus nerve stimulation studies”. Clin Neurophysiol Off J Int Fed Clin Neurophysiol., 129(11), 2503.CrossRefGoogle Scholar
  43. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2), 169–195.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lehtimäki, J., Hyvärinen, P., Ylikoski, M., Bergholm, M., Mäkelä, J. P., Aarnisalo, A., et al. (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol (Stockh)., 133(4), 378–382.CrossRefGoogle Scholar
  45. Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., et al. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage Clinical, 2, 590–599.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Liebrand, M., Kristek, J., Tzvi, E., & Krämer, U. M. (2018). Ready for change: oscillatory mechanisms of proactive motor control. PLoS One, 13(5), e0196855.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Logan, G. D. (1985). Executive control of thought and action. Acta Psychologica, 60(2–3), 193–210.CrossRefGoogle Scholar
  48. Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115(8), 1821–1835.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Manard, M., François, S., Phillips, C., Salmon, E., & Collette, F. (2017). The neural bases of proactive and reactive control processes in normal aging. Behavioural Brain Research, 320, 504–516.PubMedCrossRefPubMedCentralGoogle Scholar
  50. McKinlay, A., Grace, R. C., Dalrymple-Alford, J. C., & Roger, D. (2010). Characteristics of executive function impairment in Parkinson’s disease patients without dementia. Journal of the International Neuropsychological Society, 16(2), 268–277.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156–185.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ness, K. K., Gurney, J. G., Zeltzer, L. K., Leisenring, W., Mulrooney, D. A., Nathan, P. C., et al. (2008). The impact of limitations in physical, executive, and emotional function on health-related quality of life among adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Archives of Physical Medicine and Rehabilitation, 89(1), 128–136.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Nichols, J. A., Nichols, A. R., Smirnakis, S. M., Engineer, N. D., Kilgard, M. P., & Atzori, M. (2011). Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience, 189, 207–214.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185–2194.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. Clinical Neurophysiology, 27(2), 341–356.Google Scholar
  56. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1.CrossRefGoogle Scholar
  57. Ozonoff, S., & Jensen, J. (1999). Brief report: Specific executive function profiles in three neurodevelopmental disorders. Journal of Autism and Developmental Disorders, 29(2), 171–177.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Peuker, E. T., & Filler, T. J. (2002). The nerve supply of the human auricle. Clinical Anatomy, 15(1), 35–37.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron., 76(1), 116–129.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Pinner, J. F. L., & Cavanagh, J. F. (2017). Frontal theta accounts for individual differences in the cost of conflict on decision making. Brain Research, 1672, 73–80.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Posner, M. I., Snyder, C. R., & Solso, R. (2004). Attention and cognitive control. Cognitive Psychology Key Read, 205.Google Scholar
  62. Quetscher, C., Yildiz, A., Dharmadhikari, S., Glaubitz, B., Schmidt-Wilcke, T., Dydak, U., et al. (2015). Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Structure & Function, 220(6), 3555–3564.CrossRefGoogle Scholar
  63. Raedt, R., Clinckers, R., Mollet, L., Vonck, K., Tahry, R. E., Wyckhuys, T., et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. Journal of Neurochemistry, 117(3), 461–469.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sellaro, R., van Leusden, J. W. R., Tona, K.-D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation enhances post-error slowing. Journal of Cognitive Neuroscience, 27(11), 2126–2132.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Sherman, E. M. S., Slick, D. J., & Eyrl, K. L. (2006). Executive dysfunction is a significant predictor of poor quality of life in children with epilepsy. Epilepsia, 47(11), 1936–1942.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Skirrow, C., McLoughlin, G., Banaschewski, T., Brandeis, D., Kuntsi, J., & Asherson, P. (2015). Normalisation of frontal theta activity following methylphenidate treatment in adult attention-deficit/hyperactivity disorder. European Neuropsychopharmacology, 25(1), 85–94.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Steenbergen, L., Sellaro, R., Stock, A. K., Verkuil, B., Beste, C., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. European Neuropsychopharmacology, 25(6), 773–778.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ventura-Bort, C., Wirkner, J., Genheimer, H., Wendt, J., Hamm, A.O., Weymar, M. (2018). Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and Alpha-amylase level: a pilot study. Frontiers in Human Neuroscience. [cited 2019 Mar 15];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021745/.
  69. Wang, C.-H., Lo, Y.-H., Pan, C.-Y., Chen, F.-C., Liang, W.-K., & Tsai, C.-L. (2015). Frontal midline theta as a neurophysiological correlate for deficits of attentional orienting in children with developmental coordination disorder. Psychophysiology, 52(6), 801–812.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Warren, C. M., Tona, K. D., Ouwerkerk, L., Van Paridon, J., Poletiek, F., van Steenbergen, H., et al. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimulation, 12(3), 635–642.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., et al. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain, Behavior, and Immunity, 26(5), 811–819.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry, 57(11), 1336–1346.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Yakunina, N., Kim, S. S., & Nam, E.-C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation Technol Neural Interface, 20(3), 290–300.CrossRefGoogle Scholar
  74. Zeng, Q., Qi, S., Li, M., Yao, S., Ding, C., & Yang, D. (2017). Enhanced conflict-driven cognitive control by emotional arousal, not by valence. Cognition & Emotion, 31(6), 1083–1096.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurologyOtto von Guericke UniversityMagdeburgGermany
  2. 2.Department of NeurologyUniversity of LübeckLübeckGermany
  3. 3.Department of Behavioral NeurologyLeibniz Institute for NeurobiologyMagdeburgGermany
  4. 4.Center for Behavioral Brain SciencesMagdeburgGermany

Personalised recommendations