Advertisement

Food for Your Mind? The Effect of Tyrosine on Selective Attention

  • Christian FringsEmail author
  • Gregor Domes
  • Maximilian A. Friehs
  • Christoph Geißler
  • Kerstin Schneider
Original Research
  • 7 Downloads

Abstract

The amino acid tyrosine is the precursor of dopamine and norepinephrine and can be administered as a dietary supplement. Previous studies have demonstrated that the intake of tyrosine can enhance both working memory performance and response inhibition (e.g., Colzato et al., Frontiers in Behavioral Neuroscience, 72013; Colzato et al., Neuropsychologia, 62, 398–402, 2014). In this study, we tested whether the consumption of tyrosine improved the performance of female participants in the Attention Network Test (ANT; Fan et al., Journal of Cognitive Neuroscience, 14, 340–347 2002) and the Stroop task (Stroop, Journal of Experimental Psychology, 18, 643–662 1935). Tyrosine marginally improved the resolution of interference in the Stroop task and had some impact on average reaction times. We conclude that more research is required as to understand the mechanisms through which tyrosine influences cognitive functioning. At this point in time, it remains unclear at best whether the consumption of tyrosine can be advised as a dietary supplement to support cognition.

Keywords

Selective attention Tyrosine Dopamine Cognitive enhancement 

Notes

Compliance with Ethical Standards

The experimental protocol was approved by the ethics committee of the University of Trier and was conducted in accordance with the latest revision of the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Borodovitsyna, O., Flamini, M., & Chandler, D. (2017). Noradrenergic modulation of cognition in health and disease. Neural Plasticity, 2017, 1–14.  https://doi.org/10.1155/2017/6031478.CrossRefGoogle Scholar
  2. Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860–1862.CrossRefGoogle Scholar
  3. Cappell, J., Herrmann, N., Cornish, S., & Lanctôt, K. L. (2010). The pharmacoeconomics of cognitive enhancers in moderate to severe Alzheimer’s disease. CNS Drugs, 24, 909–927.CrossRefGoogle Scholar
  4. Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. The American Journal of Human Genetics, 75, 807–821.CrossRefGoogle Scholar
  5. Colzato, L. S., Jongkees, B. J., Sellaro, R., & Hommel, B. (2013). Working memory reloaded: tyrosine repletes updating in the N-back task. Frontiers in Behavioral Neuroscience, 7.  https://doi.org/10.3389/fnbeh.2013.00200.
  6. Colzato, L. S., Jongkees, B. J., Sellaro, R., van den Wildenberg, W. P., & Hommel, B. (2014). Eating to stop: tyrosine supplementation enhances inhibitory control but not response execution. Neuropsychologia, 62, 398–402.CrossRefGoogle Scholar
  7. Colzato, L. S., Steenbergen, L., Sellaro, R., Stock, A.-K., Arning, L., & Beste, C. (2016). Effects of L-tyrosine on working memory and inhibitory control are determined by DRD2 genotype: a randomized controlled trial. Cortex, 82, 217–224.CrossRefGoogle Scholar
  8. Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neuroscience & Biobehavioral Reviews, 30, 1–23.CrossRefGoogle Scholar
  9. Cools, R., & D’Esposito, M. (2010). Dopaminergic modulation of flexible cognitive control in humans. In A. Bjorklund, S. Dunnett, L. Iversen, & S. Iversen (Eds.), Dopamine handbook (pp. 249–260). Oxford: Oxford University Press.Google Scholar
  10. Dickinson, D., & Elvevåg, B. (2009). Genes, cognition and brain through a COMT lens. Neuroscience, 164, 72–87.CrossRefGoogle Scholar
  11. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340347.CrossRefGoogle Scholar
  12. Fernstrom, J. D., & Fernstrom, M. H. (2007). Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. The Journal of Nutrition, 137, 1539S–1547S.CrossRefGoogle Scholar
  13. Floresco, S. B., & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology, 188, 567–585.CrossRefGoogle Scholar
  14. Glaeser, B. S., Melamed, E., Growdon, J. H., & Wurtman, R. J. (1979). Elevation of plasma tyrosine after a single oral dose of L-tyrosine. Life Sciences, 25, 265–271.CrossRefGoogle Scholar
  15. Goldman-Rakic, P. S., Muly, E. C., III, & Williams, G. V. (2000). D1 receptors in prefrontal cells and circuits. Brain Research Reviews, 31, 295–301.CrossRefGoogle Scholar
  16. Greely, H., Sahakian, B., Harris, J., Kessler, R. C., Gazzaniga, M., Campbell, P., & Farah, M. J. (2008). Towards responsible use of cognitive-enhancing drugs by the healthy. Nature, 456, 702–705.CrossRefGoogle Scholar
  17. Jeffreys, H. (1961). Theory of probability. Oxford, England: Oxford University Press.Google Scholar
  18. Jongkees, B. J., Hommel, B., Kühn, S., & Colzato, L. S. (2015). Effect of tyrosine supplementation on clinical populations and healthy populations under stress or cognitive demands: a review. Journal of Psychiatric Research, 70, 50–57.  https://doi.org/10.1016/j.jpsychires.2015.08.014.CrossRefGoogle Scholar
  19. Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, A. J., . . . Morey, R. D. (2015). JASP (Version 0.7) [computer software]. Amsterdam.Google Scholar
  20. MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.CrossRefGoogle Scholar
  21. Markus, C. R., Firk, C., Gerhardt, C., Kloek, J., & Smolders, G. J. F. (2008). Effect of different tryptophan sources on amino acids availability to the brain and mood in healthy volunteers. Psychopharmacology, 201, 107–114.CrossRefGoogle Scholar
  22. Mattay, V. S., Goldberg, T. E., Fera, F., Hariri, A. R., Tessitore, A., Egan, M. F., et al. (2003). Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proceedings of the National Academy of Sciences, 100, 6186–6191.CrossRefGoogle Scholar
  23. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Reviews in Neuroscience, 13, 25–42.CrossRefGoogle Scholar
  24. Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.CrossRefGoogle Scholar
  25. Ragan, C. I., Bard, I., & Singh, I. (2013). What should we do about student use of cognitive enhancers? An analysis of current evidence. Neuropharmacology, 64, 588–595.CrossRefGoogle Scholar
  26. Russell, J. A., Weiss, A., & Mendelsohn, G. A. (1989). Affect grid: a single-item scale of pleasure and arousal. Journal of Personality and Social Psychology, 57, 493.CrossRefGoogle Scholar
  27. Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10(3), 211–223.  https://doi.org/10.1038/nrn2573.CrossRefGoogle Scholar
  28. Schneider, K. K., Schote, A. B., Meyer, J., & Frings, C. (2015). Genes of the dopaminergic system selectively modulate top-down but not bottom-up attention. Cognitive, Affective, & Behavioral Neuroscience, 15, 104–116.CrossRefGoogle Scholar
  29. Stock, A. K., Colzato, L., & Beste, C. (2018). On the effects of tyrosine supplementation on interference control in a randomized, double-blind placebo-control trial. European Neuropsychopharmacology, 28, 933–944.CrossRefGoogle Scholar
  30. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643.CrossRefGoogle Scholar
  31. Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.Google Scholar
  32. Tunbridge, E. M., Bannerman, D. M., Sharp, T., & Harrison, P. J. (2004). Catechol-O-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. The Journal of Neuroscience, 24, 5331–5335.CrossRefGoogle Scholar
  33. Tyrrell, H. A. (1998). Tyrosine: food supplement or therapeutic agent? Journal of Nutritional & Environmental Medicine, 8, 349–359.CrossRefGoogle Scholar
  34. Wagenmakers, E.–J., Wetzels, R., Borsboom, D., & van der Maas, H. L. (2011). Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100, 426–432.  https://doi.org/10.1037/a0022790
  35. Wittchen, H. U., & Beloch, E. (1997). Instruktionsmanual zur Durchführung von DIA-X-interviews; diagnostisches Expertensystem für psychische Störungen. Harcourt Test Services.Google Scholar
  36. Wühr, P., & Frings, C. (2008). A Case for inhibition: visual attention suppresses the processing of irrelevant objects. Journal of Experimental Psychology: General, 137, 116–130.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Frings
    • 1
    Email author
  • Gregor Domes
    • 2
  • Maximilian A. Friehs
    • 1
  • Christoph Geißler
    • 1
  • Kerstin Schneider
    • 1
  1. 1.Cognitive PsychologyUniversity of TrierTrierGermany
  2. 2.Biological and Clinical PsychologyUniversity of TrierTrierGermany

Personalised recommendations