Advertisement

Association of Physical Activity on Memory and Executive Function: Population-Based National Sample of Older Adults

  • Emily Frith
  • Paul D. LoprinziEmail author
Original Research

Abstract

The objective of this study was to evaluate the relationship between physical activity and various components related to memory and executive function among older adults. Data from the 2011–2012 and 2013–2014 NHANES were used (N = 2241; 60+ years of age). The Global Physical Activity Questionnaire was utilized to assess recreational engagement in moderate- and vigorous-intensity physical activity. The memory and executive assessments included the CERAD (Consortium to Establish a Registry for Alzheimer’s Disease) Word Learning subset, the animal fluency test, and the digit symbol substitution test (DSST). Vigorous-intensity physical activity was positively associated with trial 1 of the CERAD Word List (β = 0.01; 95% CI, 0.003–0.02), the average of trials 1–3 for the CERAD Word List (β = 0.01; 95% CI, 0.0001–0.02), animal fluency task (β = 0.10; 95% CI, 0.05–0.15), and the DSST (β = 0.19; 95% CI, 0.08–0.29). Older individuals meeting vigorous-intensity physical activity guidelines had superior memory and executive function.

Keywords

Cognition Epidemiology Executive function Gerontology Health promotion Verbal fluency 

Notes

Compliance with Ethical Standards

Procedures were approved by the National Center for Health Statistics review board. Consent was obtained from all participants prior to data collection. Participant data from the 2011–2012 and 2013–2014 NHANES cycles were utilized, with participants derived from 1-year cohorts.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Aichberger, M., Busch, M., Reischies, F., Ströhle, A., Heinz, A., & Rapp, M. (2010). Effect of physical inactivity on cognitive performance after 2.5 years of follow-up: longitudinal results from the Survey of Health, Ageing, and Retirement (SHARE). GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 23(1), 7.Google Scholar
  2. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17–42.  https://doi.org/10.1007/s11065-006-9002-x.Google Scholar
  3. Armstrong, T., & Bull, F. (2006). Development of the world health organization global physical activity questionnaire (GPAQ). Journal of Public Health, 14(2), 66–70.Google Scholar
  4. Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52(5), 319–330.Google Scholar
  5. Bell-McGinty, S., Podell, K., Franzen, M., Baird, A. D., & Williams, M. J. (2002). Standard measures of executive function in predicting instrumental activities of daily living in older adults. International Journal of Geriatric Psychiatry, 17(9), 828–834.  https://doi.org/10.1002/gps.646.Google Scholar
  6. Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, 2013.Google Scholar
  7. Bienias, J. L., Beckett, L. A., Bennett, D. A., Wilson, R. S., & Evans, D. A. (2003). Design of the Chicago Health and Aging Project (CHAP). Journal of Alzheimer’s Disease, 5(5), 349–355.Google Scholar
  8. Biondolillo, M. J., & Pillemer, D. B. (2015). Using memories to motivate future behaviour: an experimental exercise intervention. Memory, 23(3), 390–402.Google Scholar
  9. Bixby, W. R., Spalding, T. W., Haufler, A. J., Deeny, S. P., Mahlow, P. T., Zimmerman, J. B., & Hatfield, B. D. (2007). The unique relation of physical activity to executive function in older men and women. Medicine and Science in Sports and Exercise, 39(8), 1408–1416.  https://doi.org/10.1249/mss.0b013e31806ad708.Google Scholar
  10. Bull, F. C., Maslin, T. S., & Armstrong, T. (2009). Global physical activity questionnaire (GPAQ): nine country reliability and validity study. Journal of Physical Activity & Health, 6(6), 790–804.Google Scholar
  11. Burns, J. M., Cronk, B. B., Anderson, H. S., Donnelly, J. E., Thomas, G. P., Harsha, A., … Swerdlow, R. H. (2008). Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology, 71(3), 210–216.Google Scholar
  12. Canning, S. J., Leach, L., Stuss, D., Ngo, L., & Black, S. E. (2004). Diagnostic utility of abbreviated fluency measures in Alzheimer disease and vascular dementia. Neurology, 62(4), 556–562.Google Scholar
  13. Chang, M., Jonsson, P. V., Snaedal, J., Bjornsson, S., Saczynski, J. S., Aspelund, T., … Harris, T. B. (2010). The effect of midlife physical activity on cognitive function among older adults: AGES—Reykjavik study. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 65(12), 1369–1374.Google Scholar
  14. Chang, Y. K., Chu, C. H., Chen, F. T., Hung, T. M., & Etnier, J. L. (2017). Combined effects of physical activity and obesity on cognitive function: independent, overlapping, moderator, and mediator models. Sports Medicine, 47(3), 449–468.  https://doi.org/10.1007/s40279-016-0589-7.Google Scholar
  15. Clark, L. J., Gatz, M., Zheng, L., Chen, Y. L., McCleary, C., & Mack, W. J. (2009). Longitudinal verbal fluency in normal aging, preclinical, and prevalent Alzheimer’s disease. American Journal of Alzheimer’s Disease and Other Dementias, 24(6), 461–468.  https://doi.org/10.1177/1533317509345154.Google Scholar
  16. Cleland, C. L., Hunter, R. F., Kee, F., Cupples, M. E., Sallis, J. F., & Tully, M. A. (2014). Validity of the global physical activity questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health, 14, 1255.  https://doi.org/10.1186/1471-2458-14-1255.Google Scholar
  17. Coffey, C. E., Wilkinson, W. E., Parashos, I. A., Soady, S. A., Sullivan, R. J., Patterson, L. J., … Djang, W. T. (1992). Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology, 42(3 Pt 1), 527–536.Google Scholar
  18. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14(2), 125–130.  https://doi.org/10.1111/1467-9280.t01-1-01430.Google Scholar
  19. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170.Google Scholar
  20. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295–301.Google Scholar
  21. Cotman, C. W., Berchtold, N. C., & Christie, L.-A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472.Google Scholar
  22. Daly, M., McMinn, D., & Allan, J. L. (2014). A bidirectional relationship between physical activity and executive function in older adults. Frontiers in Human Neuroscience, 8.Google Scholar
  23. De Jager, C. A., & Budge, M. M. (2005). Stability and predictability of the classification of mild cognitive impairment as assessed by episodic memory test performance over time. Neurocase, 11(1), 72–79.Google Scholar
  24. Delhaye, E., Mechanic-Hamilton, D., Saad, L., Das, S. R., Wisse, L. E., Yushkevich, P. A., et al. (2018). Associative memory for conceptually unitized word pairs in mild cognitive impairment is related to the volume of the perirhinal cortex. Hippocampus.Google Scholar
  25. Duff, K., Schoenberg, M. R., Scott, J. G., & Adams, R. L. (2005). The relationship between executive functioning and verbal and visual learning and memory. Archives of Clinical Neuropsychology, 20(1), 111–122.  https://doi.org/10.1016/j.acn.2004.03.003.Google Scholar
  26. Duke, L. M., & Kaszniak, A. W. (2000). Executive control functions in degenerative dementias: a comparative review. Neuropsychology Review, 10(2), 75–99.Google Scholar
  27. Duzel, E., van Praag, H., & Sendtner, M. (2016a). Can physical exercise in old age improve memory and hippocampal function? Brain, 139(3), 662–673.Google Scholar
  28. Duzel, E., van Praag, H., & Sendtner, M. (2016b). Can physical exercise in old age improve memory and hippocampal function? Brain, 139(Pt 3), 662–673.  https://doi.org/10.1093/brain/awv407.Google Scholar
  29. Ekkekakis, P. (2009). The dual-mode theory of affective responses to exercise in metatheoretical context: I. Initial impetus, basic postulates, and philosophical framework. International Review of Sport and Exercise Psychology, 2(1), 73–94.Google Scholar
  30. Erickson, K. I., Raji, C. A., Lopez, O. L., Becker, J. T., Rosano, C., Newman, A. B., … Kuller, L. H. (2010). Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology, 75(16), 1415–1422.  https://doi.org/10.1212/WNL.0b013e3181f88359.
  31. Fillenbaum, G. G., van Belle, G., Morris, J. C., Mohs, R. C., Mirra, S. S., Davis, P. C., … Heyman, A. (2008). Consortium to establish a registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimers Dement, 4(2), 96–109.  https://doi.org/10.1016/j.jalz.2007.08.005.
  32. Gao, S., Jin, Y., Unverzagt, F. W., Liang, C., Hall, K. S., Ma, F., … Hendrie, H. C. (2009). Hypertension and cognitive decline in rural elderly Chinese. Journal of the American Geriatrics Society, 57(6), 1051–1057.Google Scholar
  33. Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., … American College of Sports, M. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334–1359.  https://doi.org/10.1249/MSS.0b013e318213fefb.
  34. Gorbach, T., Pudas, S., Lundquist, A., Orädd, G., Josefsson, M., Salami, A., ... & Nyberg, L. (2017). Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiology of Aging, 51(167–176).Google Scholar
  35. Grundman, M., Petersen, R. C., Ferris, S. H., Thomas, R. G., Aisen, P. S., Bennett, D. A., … Alzheimer’s Disease Cooperative, S (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of Neurology, 61(1), 59–66.  https://doi.org/10.1001/archneur.61.1.59.
  36. Hobson, P., & Leeds, L. (2001). Executive functioning in older people. Reviews in Clinical Gerontology, 11(4), 361–372.Google Scholar
  37. Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9), 2243–2257.Google Scholar
  38. Hotting, K., Schickert, N., Kaiser, J., Roder, B., & Schmidt-Kassow, M. (2016). The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016, 6860573.  https://doi.org/10.1155/2016/6860573.Google Scholar
  39. Huang, A., Jen, C., Chen, H., Yu, L., Kuo, Y., & Chen, H.-I. (2006). Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. Journal of Neural Transmission, 113(7), 803–811.Google Scholar
  40. Huang, T., Larsen, K. T., Ried-Larsen, M., Møller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: a review. Scandinavian Journal of Medicine & Science in Sports, 24(1), 1–10.Google Scholar
  41. Huo, L., Li, R., Wang, P., Zheng, Z., & Li, J. (2018). The default mode network supports episodic memory in cognitively unimpaired elderly individuals: different contributions to immediate recall and delayed recall. Frontiers in Aging Neuroscience, 10, 6.  https://doi.org/10.3389/fnagi.2018.00006.Google Scholar
  42. Kim, Y., Park, I., & Kang, M. (2013). Convergent validity of the international physical activity questionnaire (IPAQ): meta-analysis. Public Health Nutrition, 16(3), 440–452.Google Scholar
  43. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., … Boileau, R. A. (1999a). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418.Google Scholar
  44. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., … Colcombe, A. (1999b). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419.  https://doi.org/10.1038/22682.
  45. Lacharite-Lemieux, M., Brunelle, J. P., & Dionne, I. J. (2015). Adherence to exercise and affective responses: comparison between outdoor and indoor training. Menopause, 22(7), 731–740.  https://doi.org/10.1097/GME.0000000000000366.Google Scholar
  46. Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., & Kukull, W. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older exercise, aging, and risk for incident dementia. Annals of Internal Medicine, 144(2), 73–81.Google Scholar
  47. Lee, D. Y., Lee, K. U., Lee, J. H., Kim, K. W., Jhoo, J. H., Kim, S. Y., … . Woo, J. I. (2004). A normative study of the CERAD neuropsychological assessment battery in the Korean elderly. Journal of the International Neuropsychological Society, 10(1), 72–81.  https://doi.org/10.1017/S1355617704101094.
  48. Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: dissociating episodic from semantic retrieval. Psychology and Aging, 17(4), 677–689.Google Scholar
  49. Loprinzi, P. D. (2018). IGF-1 in exercise-induced enhancement of episodic memory. Acta Physiologica (Oxford, England), e13154.  https://doi.org/10.1111/apha.13154.
  50. Loprinzi, P. D., & Frith, E. (2018a). A brief primer on the mediational role of BDNF in the exercise-memory link. Clinical Physiology and Functional Imaging.  https://doi.org/10.1111/cpf.12522.
  51. Loprinzi, P. D., & Frith, E. (2018b). Obesity and episodic memory function. The Journal of Physiological Sciences, 68(4), 321–331.  https://doi.org/10.1007/s12576-018-0612-x.Google Scholar
  52. Loprinzi, P. D., Herod, S. M., Cardinal, B. J., & Noakes, T. D. (2013). Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Research, 1539, 95–104.Google Scholar
  53. Loprinzi, P. D., Edwards, M. K., & Frith, E. (2017). Potential avenues for exercise to activate episodic memory-related pathways: a narrative review. European Journal of Neuroscience. Google Scholar
  54. Magnie, M. N., Bermon, S., Martin, F., Madany-Lounis, M., Suisse, G., Muhammad, W., & Dolisi, C. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37(3), 369–377.Google Scholar
  55. Mayes, A. R., & Roberts, N. (2001). Theories of episodic memory. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 356(1413), 1395–1408.Google Scholar
  56. Misra, P., Upadhyay, R. P., Krishnan, A., Sharma, N., & Kapoor, S. K. (2014). A community based study to test the reliability and validity of physical activity measurement techniques. International Journal of Preventive Medicine, 5(8), 952.Google Scholar
  57. Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., … Clark, C. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165.Google Scholar
  58. Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: the hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–134.Google Scholar
  59. Murray, B. D., Holland, A. C., & Kensinger, E. A. (2013). Episodic memory and emotion. Handbook of Cognition and Emotion, 156–175.Google Scholar
  60. Nakajima, S., Ohsawa, I., Ohta, S., Ohno, M., & Mikami, T. (2010). Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice. Behavioural Brain Research, 211(2), 178–184.  https://doi.org/10.1016/j.bbr.2010.03.028.Google Scholar
  61. Parkin, A. J., & Java, R. I. (1999). Deterioration of frontal lobe function in normal aging: influences of fluid intelligence versus perceptual speed. Neuropsychology, 13(4), 539–545.Google Scholar
  62. Payne, J. D., Jackson, E. D., Ryan, L., Hoscheidt, S., Jacobs, J. W., & Nadel, L. (2006). The impact of stress on neutral and emotional aspects of episodic memory. Memory, 14(1), 1–16.  https://doi.org/10.1080/09658210500139176.Google Scholar
  63. Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., … Wallace, R. B. (2007). Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology, 29(1–2), 125–132.  https://doi.org/10.1159/000109998.
  64. Ploughman, M. (2008). Exercise is brain food: the effects of physical activity on cognitive function. Developmental Neurorehabilitation, 11(3), 236–240.Google Scholar
  65. Prince, M., Acosta, D., Chiu, H., Scazufca, M., Varghese, M., & Dementia Research, G. (2003). Dementia diagnosis in developing countries: a cross-cultural validation study. Lancet, 361(9361), 909–917.  https://doi.org/10.1016/S0140-6736(03)12772-9.Google Scholar
  66. Proust-Lima, C., Amieva, H., Dartigues, J. F., & Jacqmin-Gadda, H. (2007). Sensitivity of four psychometric tests to measure cognitive changes in brain aging-population-based studies. American Journal of Epidemiology, 165(3), 344–350.  https://doi.org/10.1093/aje/kwk017.Google Scholar
  67. Ramirez-Gomez, L., Zheng, L., Reed, B., Kramer, J., Mungas, D., Zarow, C., … Chui, H. (2017). Neuropsychological profiles differentiate Alzheimer disease from subcortical ischemic vascular dementia in an autopsy-defined cohort. Dementia and Geriatric Cognitive Disorders, 44(1–2), 1–11.  https://doi.org/10.1159/000477344.
  68. Risacher, S. L., Wishart, H. A., & Saykin, A. J. (2011). Functional MRI studies of memory in aging, mild cognitive impairment, and Alzheimer’s disease. Boston: Springer.Google Scholar
  69. Roig, M., Thomas, R., Mang, C. S., Snow, N. J., Ostadan, F., Boyd, L. A., & Lundbye-Jensen, J. (2016). Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences Reviews, 44(2), 81–88.Google Scholar
  70. Roozendaal, B., McEwen, B. S., & Chattarji, S. (2009). Stress, memory and the amygdala. Nature Reviews. Neuroscience, 10(6), 423–433.  https://doi.org/10.1038/nrn2651.Google Scholar
  71. Rowe, J. W., & Kahn, R. L. (1997). Successful aging. The Gerontologist, 37(4), 433–440.Google Scholar
  72. Ryan, S. M., & Nolan, Y. M. (2016). Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neuroscience and Biobehavioral Reviews, 61, 121–131.  https://doi.org/10.1016/j.neubiorev.2015.12.004.Google Scholar
  73. Scherder, E. J., Van Paasschen, J., Deijen, J. B., Van Der Knokke, S., Orlebeke, J. F., Burgers, I., … Sergeant, J. A. (2005). Physical activity and executive functions in the elderly with mild cognitive impairment. Aging & Mental Health, 9(3), 272–280.  https://doi.org/10.1080/13607860500089930.
  74. Schwarz, A. J., Brasel, J., Hintz, R. L., Mohan, S., & Cooper, D. (1996). Acute effect of brief low-and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. The Journal of Clinical Endocrinology & Metabolism, 81(10), 3492–3497.Google Scholar
  75. Shao, Z., Janse, E., Visser, K., & Meyer, A. S. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Frontiers in Psychology, 5, 772.Google Scholar
  76. St Jacques, P. L., & Levine, B. (2007). Ageing and autobiographical memory for emotional and neutral events. Memory, 15(2), 129–144.  https://doi.org/10.1080/09658210601119762.Google Scholar
  77. Szoeke, C., Dennerstein, L., Henderson, V., & Lehert, P. (2015). Verbal episodic memory is influenced by reported fatigue in otherwise healthy women: data from the women’s healthy ageing project. Alzheimer’s & dementia. The Journal of the Alzheimer’s Association, 11(7), 459.Google Scholar
  78. Takashima, A., Nieuwenhuis, I. L., Jensen, O., Talamini, L. M., Rijpkema, M., & Fernandez, G. (2009). Shift from hippocampal to neocortical centered retrieval network with consolidation. The Journal of Neuroscience, 29(32), 10087–10093.  https://doi.org/10.1523/JNEUROSCI.0799-09.2009.Google Scholar
  79. Tooze, J. A., Troiano, R. P., Carroll, R. J., Moshfegh, A. J., & Freedman, L. S. (2013). A measurement error model for physical activity level as measured by a questionnaire with application to the 1999-2006 NHANES questionnaire. American Journal of Epidemiology, 177(11), 1199–1208.  https://doi.org/10.1093/aje/kws379.Google Scholar
  80. Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181–188.Google Scholar
  81. Troyer, A. K., Graves, R. E., & Cullum, C. M. (1994). Executive functioning as a mediator of the relationship between age and episodic memory in healthy aging. Aging and Cogntion, 1(1), 45–53.Google Scholar
  82. Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review of Psychology, 53(1), 1–25.Google Scholar
  83. Tuokko, H., Griffith, L. E., Simard, M., & Taler, V. (2017). Cognitive measures in the Canadian longitudinal study on aging. The Clinical Neuropsychologist, 31(1), 233–250.  https://doi.org/10.1080/13854046.2016.1254279.Google Scholar
  84. Van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25(38), 8680–8685.Google Scholar
  85. Vazzana, R., Bandinelli, S., Lauretani, F., Volpato, S., Lauretani, F., Di Iorio, A., … Ferrucci, L. (2010). Trail making test predicts physical impairment and mortality in older persons. Journal of the American Geriatrics Society, 58(4), 719–723.  https://doi.org/10.1111/j.1532-5415.2010.02780.x.
  86. Vilkki, J., & Holst, P. (1991). Mental programming after frontal lobe lesions: results on digit symbol performance with self-selected goals. Cortex, 27(2), 203–211.Google Scholar
  87. Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., ... & Olson, E. A. (2013). Neurobiological markers of exercise-related brain plasticity in older adults. Brain, Behavior, and Immunity, 28, 90–99.Google Scholar
  88. Wechsler, D. (1958). The measurement and appraisal of adult intelligence. Academic Medicine, 33(9).Google Scholar
  89. Winocur, G., Moscovitch, M., & Sekeres, M. (2007). Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nature Neuroscience, 10(5), 555–557.  https://doi.org/10.1038/nn1880.Google Scholar
  90. Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., … Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597–609.  https://doi.org/10.1016/j.nlm.2006.11.003.
  91. Wolf, O. T. (2008). The influence of stress hormones on emotional memory: relevance for psychopathology. Acta Psychologica, 127(3), 513–531.  https://doi.org/10.1016/j.actpsy.2007.08.002.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, School of Applied SciencesThe University of MississippiOxfordUSA

Personalised recommendations