Advertisement

Journal of Cognitive Enhancement

, Volume 2, Issue 4, pp 356–363 | Cite as

Neuroethical Implications of Neurocognitive Enhancement in Managerial Professional Contexts

  • Giulia Fronda
  • Michela Balconi
  • Davide Crivelli
Mini-Review

Abstract

In last years, neurocognitive enhancement represents a field of great interest and a debated topic in literature. The neuroenhancement concerns the use of different neuroscientific methods that increase individuals’ cognitive performance operating on the brain and the nervous system. Recent studies have indeed highlighted how neuroscientific techniques could improve specific functions such as attention, perception, and memory in clinical and experimental contexts. The development of new and different techniques of neurocognitive enhancement leads to the necessity to investigate the ethical and legal implications related to the use of these tools for the enhancement of mental and physical functions. In particular, this work highlights the ethical and moral implications of the use of neurocognitive tools and techniques based on awareness practices and supported by the use of a wearable device. This paper, therefore, offers an overview of the criticalities and benefits of the use of neurocognitive enhancement techniques on individuals and society, highlighting particularly the use of neurocognitive enhancement within professional contexts in the improvement of organizations effectiveness, coordination, and productivity.

Keywords

Neurocognitive enhancement Neuroethics Professional contexts Manager Wearable devices 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Agar, N. (2014b). Truly human enhancement: a philosophical defense of limits. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  2. Anand, R., Chapman, S. B., Rackley, A., Keebler, M., Zientz, J., & Hart, J. (2011). Gist reasoning training in cognitively normal seniors. International Journal of Geriatric Psychiatry, 26(9), 961–968.  https://doi.org/10.1002/gps.2633.CrossRefPubMedGoogle Scholar
  3. Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101.  https://doi.org/10.1038/nature12486.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ayaz, H., Izzetoglu, M., Platek, S. M., Bunce, S., Izzetoglu, K., Pourrezaei, K., & Onaral, B. (2006). Registering fNIR data to brain surface image using MRI templates. International Conference of the IEEE Engineering in Medicine and Biology Society, 2671–2674.  https://doi.org/10.1109/IEMBS.2006.260835.
  5. Balconi, M., & Bortolotti, A. (2012). Resonance mechanism in empathic behavior: BEES, BIS/BAS and psychophysiological contribution. Physiology & Behavior, 105(2), 298–304.  https://doi.org/10.1016/j.physbeh.2011.08.002.CrossRefGoogle Scholar
  6. Balconi, M., & Mazza, G. (2009). Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band. Internationl Journal of Psychophysiology, 74(2), 158–165.  https://doi.org/10.1016/j.ijpsycho.2009.08.006.CrossRefGoogle Scholar
  7. Balconi, M., & Mazza, G. (2010). Lateralization effect in comprehension of emotional facial expression: a comparison between EEG alpha band power and behavioural inhibition (BIS) and activation (BAS) systems. Laterality: Asymmetries of Body, Brain and Cognition, 15(3), 361–384.  https://doi.org/10.1080/13576500902886056.CrossRefGoogle Scholar
  8. Balconi, M., & Pozzoli, U. (2008). Event-related oscillations (ERO) and event- related potentials (ERP) in emotional face recognition. International Journal of Neuroscience, 118(10), 1412–1424.  https://doi.org/10.1080/00207450601047119.CrossRefPubMedGoogle Scholar
  9. Balconi, M., Grippa, E., & Vanutelli, M. E. (2015). What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing. Brain and Cognition, 95, 67–76.  https://doi.org/10.1016/j.bandc.2015.02.001.CrossRefPubMedGoogle Scholar
  10. Balconi, M., Fronda, G., Venturella, I., & Crivelli, D. (2017). Conscious, pre-conscious and unconscious mechanisms in emotional behaviour. Some applications to the mindfulness approach with wearable devices. Applied Sciences, 7(12), 1280.  https://doi.org/10.3390/app7121280.CrossRefGoogle Scholar
  11. Berryhill, M. E., & Jones, K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 521(2), 148–151.  https://doi.org/10.1016/j.neulet.2012.05.074.CrossRefPubMedGoogle Scholar
  12. Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., . . . Devins, G. (2004). Mindfulness: a proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241.  https://doi.org/10.1093/clipsy.bph077.
  13. Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311–341.  https://doi.org/10.1007/s11948-009-9142-5.CrossRefGoogle Scholar
  14. Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84(4), 822–848.  https://doi.org/10.1037/0022-3514.84.4.822.CrossRefPubMedGoogle Scholar
  15. Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., et al. (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 5(3), 175–195.  https://doi.org/10.1016/j.brs.2011.03.002.CrossRefGoogle Scholar
  16. Butcher, J. (2003). Cognitive enhancement raises ethical concerns: academics urge pre-emptive debate on neurotechnologies. Lancet, 362(9378), 132–133.CrossRefPubMedGoogle Scholar
  17. Cahn, B. R., & Polich, J. (2009). Meditation (Vipassana) and the P3a event-related brain potential. International Journal of Psychophysiology, 72(1), 51–60.  https://doi.org/10.1016/j.ijpsycho.2008.03.013.CrossRefPubMedGoogle Scholar
  18. Caplan, A., & Mobley, W. (2002). No brainer--can we cope with the ethical ramifications of new knowledge of the human brain? Cerebrum, 4(3), 63.PubMedGoogle Scholar
  19. Carlson, M. C., Erickson, K. I., Kramer, A. F., Voss, M. W., Bolea, N., Mielke, M., ... & Fried, L. P. (2009). Evidence for neurocognitive plasticity in at-risk older adults: the experience corps program. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 64(12), 1275–1282.  https://doi.org/10.1093/gerona/glp117.
  20. Chapman, S. B., & Mudar, R. A. (2013). Discourse gist: a window into the brain’s complex cognitive capacity. Discourse Studies, 15(5), 519–533.  https://doi.org/10.1177/1461445613501444.CrossRefGoogle Scholar
  21. Chapman, S. B., & Mudar, R. A. (2014). Enhancement of cognitive and neural functions through complex reasoning training: evidence from normal and clinical populations. Frontiers in Systems Neuroscience, 8(69).  https://doi.org/10.3389/fnsys.2014.00069.
  22. Chatterjee, A. (2013). The ethics of neuroenhancement. In J. Bernat & R. Beresford (Eds.), Ethical and legal issues in neurology: handbook of clinical neurology (Vol. 118, pp. 323–334). Amsterdam: Elsevier.CrossRefGoogle Scholar
  23. Clare, L., & Woods, R. T. (2004). Cognitive training and cognitive rehabilitation for people with early-stage Alzheimer’s disease: a review. Neuropsychological Rehabilitation, 14(4), 385–401.CrossRefGoogle Scholar
  24. Clark, V. P., & Parasuraman, R. (2014). Neuroenhancement: enhancing brain and mind in health and in disease. Neuroimage, 85(3), 889–894.  https://doi.org/10.1080/09602010443000074.CrossRefPubMedGoogle Scholar
  25. Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage, 85(3), 895–908.  https://doi.org/10.1016/j.neuroimage.2013.07.083.CrossRefPubMedGoogle Scholar
  26. Cohen Kadosh, R. (2013). The stimulated brain: cognitive enhancement using non- invasive brain stimulation. Amsterdam: Elsevier.Google Scholar
  27. Cohen Kadosh, R., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22(4), R108–R111.  https://doi.org/10.1016/j.cub.2012.01.013.CrossRefPubMedGoogle Scholar
  28. Creswell, J. D., Way, B. M., Eisenberger, N. I., & Lieberman, M. D. (2007). Neural correlates of dispositional mindfulness during affect labeling. Psychosomatic Medicine, 69(6), 560–565.  https://doi.org/10.1097/PSY.0b013e3180f6171f.CrossRefPubMedGoogle Scholar
  29. Crivelli, D., Fronda, G., Venturella, I., & Balconi, M. (2018). Supporting mindfulness practices with brain-sensing devices. Cognitive and electrophysiological evidences. Mindfulness, 1–11.  https://doi.org/10.1007/s12671-018-0975-3.
  30. Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730.  https://doi.org/10.1037/a0014296.CrossRefPubMedGoogle Scholar
  31. Davidson, R. J. (1995). Cerebral asymmetry, emotion and affective style. In R. J. Davidson & K. Hughdahl (Eds.), Brain asymmetry (pp. 361–387). Cambridge: MIT Press.Google Scholar
  32. Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3(1), 11–21.  https://doi.org/10.1016/S1364-6613(98)01265-0.CrossRefPubMedGoogle Scholar
  33. Decety, J., Jeannerod, M., Germain, M., & Pastene, J. (1991). Vegetative response during imagined movement is proportional to mental effort. Behavioural Brain Research, 42(1), 1–5.  https://doi.org/10.1016/S0166-4328(05)80033-6.CrossRefPubMedGoogle Scholar
  34. Decety, J., Jeannerod, M., Durozard, D., & Baverel, G. (1993). Central activation of autonomic effectors during mental simulation of motor actions in man. The Journal of Physiology, 461(1), 549–563.  https://doi.org/10.1113/jphysiol.1993.sp019528.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Denis, M. (1985). Visual imagery and the use of mental practice in the development of motor skills. Canadian Journal of Applied Sport Sciences, 10(4), 4S–16S.Google Scholar
  36. Earp, B. D., Sandberg, A., Kahane, G., & Savulescu, J. (2014). When is diminishment a form of enhancement? Rethinking the enhancement debate in biomedical ethics. Frontiers in Systems Neuroscience, 8(12).  https://doi.org/10.3389/fnsys.2014.00012.
  37. Elliott, C. (1998). The tyranny of happiness: ethics and cosmetic psychopharmacology. In E. Parens (Ed.), Enhancing human traits: ethical and social implications (pp. 177–188). Washington, DC: Georgetown University Press.Google Scholar
  38. Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, Ø., Larsen, V. A., & Walhovd, K. B. (2012). Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Human Brain Mapping, 33(10), 2390–2406.  https://doi.org/10.1002/hbm.21370.CrossRefPubMedGoogle Scholar
  39. Everhart, D. E., Carpenter, M. D., Carmona, J. E., Ethridge, A. J., & Demaree, H. A. (2003). Adult sex-related P300 differences during the perception of emotional prosody and facial affect. Psychophysiology, 40(S1), S39.Google Scholar
  40. Farah, M. J. (2005). Neuroethics: the practical and the philosophical. Trends in Cognitive Sciences, 9(1), 34–40.  https://doi.org/10.1016/j.tics.2004.12.001.CrossRefPubMedGoogle Scholar
  41. Farah, M. J., Illes, J., Cook-Deegan, R., Gardner, H., Kandel, E., King, P., et al. (2004). Neurocognitive enhancement: what can we do and what should we do? Nature Reviews Neuroscience, 5(5), 421–425.  https://doi.org/10.1038/nrn1390.CrossRefPubMedGoogle Scholar
  42. Finke, R. A., & Kosslyn, S. M. (1980). Mental imagery acuity in the peripheral visual field. Journal of Experimental Psychology: Human Perception and Performance, 6(1), 126–139.  https://doi.org/10.1037/0096-1523.6.1.126.CrossRefPubMedGoogle Scholar
  43. Flöel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage, 85(3), 934–947.  https://doi.org/10.1016/j.neuroimage.2013.05.098.CrossRefGoogle Scholar
  44. Flöel, A., Meinzer, M., Kirstein, R., Nijhof, S., Deppe, M., Knecht, S., & Breitenstein, C. (2011). Short-term anomia training and electrical brain stimulation. Stroke, 42(7), 2065–2067.  https://doi.org/10.1161/STROKEAHA.110.609032.CrossRefPubMedGoogle Scholar
  45. Fuchs, T. (2006). Ethical issues in neuroscience. Current Opinion in Psychiatry, 19(6), 600–607.  https://doi.org/10.1097/01.yco.0000245752.75879.26.CrossRefPubMedGoogle Scholar
  46. Gentili, R., Papaxanthis, C., & Pozzo, T. (2006). Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience, 137(3), 761–772.  https://doi.org/10.1016/j.neuroscience.2005.10.013.CrossRefPubMedGoogle Scholar
  47. Greely, H., Sahakian, B., Harris, J., Kessler, R. C., Gazzaniga, M., Campbell, P., & Farah, M. J. (2008). Towards responsible use of cognitive-enhancing drugs by the healthy. Nature, 456(7223), 702–705.  https://doi.org/10.1038/456702a.CrossRefGoogle Scholar
  48. Gruzelier, J. H., & Egner, T. (2004). Physiological self-regulation: biofeedback and neurofeedback. Musical excellence. In A. Williamon (Ed.), Musical excellence: strategies and techniques to enhance performance (pp. 197–219). London: Oxford University Press.Google Scholar
  49. Gunaratana, V. H. (1993). Sati. mindfulness in plain English. Somerville, MA: Wisdom Publications.Google Scholar
  50. Harris, J. (2007). Enhancing evolution: the ethical case for making better people. Princeton: Princeton University Press.Google Scholar
  51. Harris, J. (2009). Is it acceptable for people to take methylphenidate to enhance performance? Yes. BMJ: British Medical Journal, 338.  https://doi.org/10.1136/bmj.b1955.
  52. Hayes, A. M., & Feldman, G. (2004). Clarifying the construct of mindfulness in the context of emotion regulation and the process of change in therapy. Clinical Psychology: Science and Practice, 11(3), 255–262.  https://doi.org/10.1093/clipsy.bph080.CrossRefGoogle Scholar
  53. Heinz, A., Kipke, R., Heimann, H., & Wiesing, U. (2012). Cognitive neuroenhancement: false assumptions in the ethical debate. Journal of Medical Ethics, 38(6), 372–375.  https://doi.org/10.1136/medethics-2011-100041.CrossRefPubMedGoogle Scholar
  54. Hildt, E., & Franke, A. (2013). Cognitive enhancement: an interdisciplinary perspective. Dordrecht: Springer.CrossRefGoogle Scholar
  55. Hunter, M. A., Coffman, B., Trumbo, M., & Clark, V. (2013). Tracking the neuroplastic changes associated with transcranial direct current stimulation: a push for multimodal imaging. Frontiers in Human Neuroscience, 7(495).  https://doi.org/10.3389/fnhum.2013.00495.
  56. Hyman, S. E. (2011). Cognitive enhancement: promises and perils. Neuron, 69(4), 595–598.  https://doi.org/10.1016/j.neuron.2011.02.012.CrossRefPubMedGoogle Scholar
  57. Ilieva, I. P., Hook, C. J., & Farah, M. J. (2015). Prescription stimulants’ effects on healthy inhibitory control, working memory, and episodic memory: a meta-analysis. Journal of Cognitive Neuroscience, 27(6), 1069–1089.  https://doi.org/10.1162/jocn_a_00776.CrossRefPubMedGoogle Scholar
  58. Ingvar, D. H., & Philipson, L. (1977). Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Annals of Neurology, 2(3), 230–237.  https://doi.org/10.1002/ana.410020309.CrossRefPubMedGoogle Scholar
  59. Jacobson, E. (1932). Electrophysiology of mental activities. The American Journal of Psychology, 44(4), 677–694.  https://doi.org/10.2307/1414531.CrossRefGoogle Scholar
  60. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.  https://doi.org/10.1073/pnas.0801268105.CrossRefGoogle Scholar
  61. Jha, A. P., Witkin, J. E., Morrison, A. B., Rostrup, N., & Stanley, E. (2017). Short-form mindfulness training protects against working memory degradation over high-demand intervals. Journal of Cognitive Enhancement, 1(2), 154–171.  https://doi.org/10.1007/s41465-017-0035-2.CrossRefGoogle Scholar
  62. Juengst, E. (1998). What does enhancement mean? In E. Parens (Ed.), Enhancing human traits (pp. 25–43). Washington, DC: Georgetown University Press.Google Scholar
  63. Kabat-Zinn, J. (1990). Full catastrophe living: how to cope with stress, pain and illness using mindfulness meditation. New York: NY: Bantam Dell.Google Scholar
  64. Kapleau, P. (1965). The three pillars of Zen: teaching, practice and enlightenment. Boston: Bacon Press.Google Scholar
  65. Keng, S. L., Smoski, M. J., & Robins, C. J. (2011). Effects of mindfulness on psychological health: a review of empirical studies. Clinical Psychology Review, 31(6), 1041–1056.  https://doi.org/10.1016/j.cpr.2011.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Khoury, B., Lecomte, T., Fortin, G., Masse, M., Therien, P., Bouchard, V., et al. (2013). Mindfulness-based therapy: a comprehensive meta-analysis. Clinical Psychology Review, 33(6), 763–771.  https://doi.org/10.1016/j.cpr.2013.05.005.CrossRefPubMedGoogle Scholar
  67. Koelega, H. S. (1993). Stimulant drugs and vigilance performance: a review. Psychopharmacology, 111(1), 1–16.  https://doi.org/10.1007/BF02257400.CrossRefPubMedGoogle Scholar
  68. Kumar, S. M., Feldman, G. C., & C., H.S. (2008). Changes in mindfulness end emotion regulation in an exposure based cognitive therapy for depression. Cognitive Therapy & Research, 32(6), 734–744.  https://doi.org/10.1007/s10608-008-9190-1.
  69. Lau, M. A., Bishop, S. R., Segal, Z. V., Buis, T., Anderson, N. D., Carlson, L., et al. (2006). The Toronto Mindfulness Scale: development and validation. Journal of Clinical Psychology, 62(12), 1445–1467.  https://doi.org/10.1002/jclp.20326.CrossRefPubMedGoogle Scholar
  70. Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences, 106(41), 17558–17563.  https://doi.org/10.1073/pnas.0902455106.CrossRefGoogle Scholar
  71. Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment. New York, NY: Oxford University Press.Google Scholar
  72. Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676.  https://doi.org/10.1037/a0020080.CrossRefPubMedGoogle Scholar
  73. Lucke, J., & Partridge, B. (2013). Towards a smart population: a public health framework for cognitive enhancement. Neuroethics, 6(2), 419–427.  https://doi.org/10.1007/s12152-012-9167-3.CrossRefGoogle Scholar
  74. Madden, D. J., Bennett, I. J., & Song, A. W. (2009a). Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychology Review, 19(4), 415–435.  https://doi.org/10.1007/s11065-009-9113-2.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Marcus, S. (2002). Neuroethics: mapping the field. New York: Dana Press.Google Scholar
  76. Marraccini, M. E., Weyandt, L. L., Rossi, J. S., & Gudmundsdottir, B. G. (2016). Neurocognitive enhancement or impairment? A systematic meta-analysis of prescription stimulant effects on processing speed, decision-making, planning, and cognitive perseveration. Experimental and Clinical Psychopharmacology, 24(4), 269–284.  https://doi.org/10.1037/pha0000079.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Martin, M., Clare, L., Altgassen, A. M., Cameron, M. H., & Zehnder, F. (2011). Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Databaase of Systematic Reviews, 1.  https://doi.org/10.1002/14651858.CD006220.
  78. McKendrick, R., Parasuraman, R., & Ayaz, H. (2015). Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Frontiers in Systems Neuroscience, 9(27).  https://doi.org/10.3389/fnsys.2015.00027.
  79. Metzinger, T., & Hildt, E. (2011). Cognitive enhancement. In J. Illes & B. J. Sahakian (Eds.), Oxford handbook of neuroethics. Oxford: Oxford University Press.Google Scholar
  80. Mulder, T., Zijlstra, S., Zijlstra, W., & Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain Research, 154(2), 211–217.  https://doi.org/10.1007/s00221-003-1647-6.CrossRefPubMedGoogle Scholar
  81. Nagel, S. K. (2010a). Too much of a good thing? Enhancement and the burden of self-determination. Neuroethics, 3(2), 109–119.  https://doi.org/10.3389/fnsys.2014.00072.CrossRefGoogle Scholar
  82. Nagel, S. K. (2014). Enhancement for well-being is still ethically challenging. Frontiers in Systems Neuroscience, 8(72).  https://doi.org/10.3389/fnsys.2014.00072.
  83. Nagel, S. K. (2015). When aid is a good thing: trusting relationships as autonomy support in health care settings. The American Journal of Bioethics, 15(10), 49–51.  https://doi.org/10.1080/15265161.2015.1074316.CrossRefPubMedGoogle Scholar
  84. Nesse, R. M., Bhatnagar, S., & Ellis, B. (2016). Evolutionary origins and functions of the stress response system. In Stress: concepts, cognition, emotion, and behavior (pp. 95–101).Google Scholar
  85. Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences, 100(23), 13728–13733.  https://doi.org/10.1073/pnas.1735487100.CrossRefGoogle Scholar
  86. O’Connor, C., & Nagel, S. K. (2017). Neuro-enhancement practices across the lifecourse: exploring the roles of relationality and individualism. Frontiers in Sociology, 2(1).  https://doi.org/10.3389/fsoc.2017.00001.
  87. Page, S. J., Levine, P., Sisto, S., & Johnston, M. V. (2001). A randomized efficacy and feasibility study of imagery in acute stroke. Clinical Rehabilitation, 15(3), 233–240.  https://doi.org/10.1191/026921501672063235.CrossRefPubMedGoogle Scholar
  88. Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P., & Albani, M. (2007). Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort. Brain and Cognition, 64(1), 74–85.  https://doi.org/10.1016/j.bandc.2007.01.001.CrossRefPubMedGoogle Scholar
  89. Parasuraman, R., & McKinley, R. A. (2014). Using noninvasive brain stimulation to accelerate learning and enhance human performance. Human Factors, 56(5), 816–824.  https://doi.org/10.1177/0018720814538815.CrossRefPubMedGoogle Scholar
  90. Parens, E. (1998). Enhancing human traits: ethical and social implications. Washington, DC: Georgetown University Press.Google Scholar
  91. Pascoe, M., & Crewther, S. (2016). A systematic review of randomised control trials examining the effects of mindfulness on stress and anxious symptomatology. Journal of Psychiatric Research, 68, 270–282.  https://doi.org/10.1016/j.jpsychires.2015.07.013.CrossRefGoogle Scholar
  92. Pascual-Leone, A., Nguyet, D., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A., & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74(3), 1037–1045.  https://doi.org/10.1152/jn.1995.74.3.1037.CrossRefPubMedGoogle Scholar
  93. Raes, F., Dewulf, D., Van Heeringen, C., & Williams, J. M. G. (2009). Mindfulness and reduced cognitive reactivity to sad mood: evidence from a correlational study and a non-randomized waiting list controlled study. Behaviour Research and Therapy, 47(7), 623–662.  https://doi.org/10.1016/j.brat.2009.03.007.CrossRefPubMedGoogle Scholar
  94. Ray, K. S. (2016). Not just “study drugs” for the rich: stimulants as moral tools for creating opportunities for socially disadvantaged students. The American Journal of Bioethics, 16(6), 29–38.  https://doi.org/10.1080/15265161.2016.1170231.CrossRefPubMedGoogle Scholar
  95. Riccio, C. A., Waldrop, J. J., Reynolds, C. R., & Lowe, P. (2001). Effects of stimulants on the continuous performance test (CPT). The Journal of Neuropsychiatry and Clinical Neurosciences, 13(3), 326–335.  https://doi.org/10.1176/jnp.13.3.326.CrossRefPubMedGoogle Scholar
  96. Roland, P. E., Larsen, B., Lassen, N. A., & Skinhoj, E. (1980). Supplementary motor area and other cortical areas in organization of voluntary movements in man. Journal of Neurophysiology, 43(1), 118–136.  https://doi.org/10.1152/jn.1980.43.1.118.CrossRefPubMedGoogle Scholar
  97. Rooks, J. D., Morrison, A. B., Goolsarran, M., Rogers, S. L., & Jha, A. P. (2017). We are talking about practice: the influence of mindfulness vs. relaxation training on athletes’ attention and well-being over high-demand intervals. Journal of Cognitive Enhancement, 1(2), 141–153.  https://doi.org/10.1007/s41465-017-0016-5.
  98. Roozendaal, B., McEwen, B. S., & Chattarji, S. (2009). Stress, memory and the amygdala. Nature Reviews Neuroscience, 10(6), 423–433.  https://doi.org/10.1038/nrn2651.CrossRefPubMedGoogle Scholar
  99. Sahakian, B., & Morein-Zamir, S. (2007). Cognitive enhancement: professor’s little helper. Nature, 450(7173), 1157–1159.  https://doi.org/10.1038/4501157a.CrossRefPubMedGoogle Scholar
  100. Sahakian, B., & Morein-Zamir, S. (2011). Neuroethical issues in cognitive enhancement. Journal of Psychopharmacology, 25(2), 197–204.  https://doi.org/10.1177/0269881109106926.CrossRefPubMedGoogle Scholar
  101. Sandberg, A. (2011). Cognition enhancement: upgrading the brain. In J. Savulescu, R. ter Meulen, & G. Kahane (Eds.), Enhancing human capacities (pp. 71–91). Malden, MA: Wiley-Blackwell.Google Scholar
  102. Sandel, M. J. (2009). The case against perfection. Cambridge, MA: Harvard University Press.Google Scholar
  103. Santoni de Sio, F., Faulmüller, N., & Vincent, N. A. (2014). How cognitive enhancement can change our duties. Frontiers in Systems Neuroscience, 8(131).  https://doi.org/10.3389/fnsys.2014.00131.
  104. Savulescu, J., Sandberg, A., & Kahane, G. (2011). Enhancement and well-being. In J. Savulescu, R. ter Meulen, & G. Kahane (Eds.), Enhancing human capacities (pp. 3–18). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  105. Schelle, K. J., Faulmüller, N., Caviola, L., & Hewstone, M. (2014). Attitudes toward pharmacological cognitive enhancement—a review. Frontiers in Systems Neuroscience, 8(53).  https://doi.org/10.3389/fnsys.2014.00053.
  106. Schlösser, R. G. M., Nenadic, I., Wagner, G., Zysset, S., Koch, K., & Sauer, H. (2009). Dopaminergic modulation of brain systems subserving decision making under uncertainty: a study with fMRI and methylphenidate challenge. Synapse, 63(5), 429–442.  https://doi.org/10.1002/syn.20621.CrossRefPubMedGoogle Scholar
  107. Schooler, C. (1984). Psychological effects of complex environments during the life span: a review and theory. Intelligence, 8(4), 259–281.  https://doi.org/10.1016/0160-2896(84)90011-4.CrossRefGoogle Scholar
  108. Schooler, C., Mulatu, M. S., & Oates, G. (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychology and Aging, 14(3), 483–506.CrossRefPubMedGoogle Scholar
  109. Shook, J. R., Galvagni, L., & Giordano, J. (2014). Cognitive enhancement kept within contexts: neuroethics and informed public policy. Frontiers in Systems Neuroscience, 8(228).  https://doi.org/10.3389/fnsys.2014.00228.
  110. Singh, I., & Kelleher, K. J. (2010). Neuroenhancement in young people: proposal for research, policy, and clinical management. AJOB Neuroscience, 1(1), 3–16.  https://doi.org/10.1080/21507740903508591.CrossRefGoogle Scholar
  111. Strenziok, M., Parasuraman, R., Clarke, E., Cisler, D. S., Thompson, J. C., & Greenwood, P. M. (2014). Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. Neuroimage, 85(3), 1027–1039.  https://doi.org/10.1016/j.neuroimage.2013.07.069.CrossRefPubMedGoogle Scholar
  112. Teasdale, J. D., Segal, Z., & Williams, J. M. G. (1995). How does cognitive therapy prevent depressive relapse and why should attentional control (mindfulness) training help? Behaviour Research and Therapy, 33(1), 25–39.  https://doi.org/10.1016/0005-7967(94)E0011-7.CrossRefPubMedGoogle Scholar
  113. Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS One, 3(7), e2598.  https://doi.org/10.1371/journal.pone.0002598.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H., Chaddock, L., & Kramer, A. F. (2012). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Human Brain Mapping, 34(11), 2972–2985.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wolpe, P. (2002). Treatment, enhancement and the ethics of neurotherapeutics. Brain and Cognition, 50(3), 387–395.  https://doi.org/10.1016/S0278-2626(02)00534-1.CrossRefGoogle Scholar
  116. Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27(5), 455–471.  https://doi.org/10.3233/RNN-2009-0495.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Research Unit in Affective and Social NeuroscienceCatholic University of the Sacred HeartMilanItaly
  2. 2.Department of PsychologyCatholic University of the Sacred HeartMilanItaly

Personalised recommendations