Advertisement

Photon energy absorption and exposure buildup factors for deep penetration in human tissues

  • O. KadriEmail author
  • A. Alfuraih
Article
  • 25 Downloads

Abstract

Using photons in therapeutic and diagnostic medicine requires accurate computation of their attenuation coefficients in human tissues. The buildup factor, a multiplicative coefficient quantifying the ratio of scattered to primary photons, measures the degree of violation of the Beer–Lambert law. In this study, the gamma-ray isotropic point source buildup factors, specifically, the energy absorption buildup factor (EABF) and exposure buildup factor, are estimated. The computational methods used include the geometric progression fitting method and simulation using the Geant4 (version 10.4) Monte Carlo simulation toolkit. The buildup factors of 30 human tissues were evaluated in an energy range of 0.015–15 MeV for penetration depths up to 100 mean free paths (mfp). At all penetration depths, it was observed that the EABF seems to be independent of the mfp at a photon energy of 1.5 MeV and also independent of the equivalent atomic number (\(Z_{\text{eq}}\)) in the photon energy range of 1.5–15 MeV. However, the buildup factors were inversely proportional to \(Z_{\text{eq}}\) for energies below 1.5 MeV. Moreover, the Geant4 simulations of the EABF of water were in agreement with the available standard data. (The deviations were less than 5%.) The buildup factors evaluated in the present study could be useful for controlling human exposure to radiation.

Keywords

Buildup factors Human tissues Geant4 GP fitting Gamma rays 

Supplementary material

41365_2019_701_MOESM1_ESM.xlsx (521 kb)
Supplementary material 1 (xlsx 521 KB)

References

  1. 1.
    F.O. Ogundare, I.O. Olarinoye, R.I. Obed., Estimation of patients’ organ and conceptus doses from selected x-ray examinations in two Nigeria x-ray centers. Radiat. Prot. Dosim. 132(4), 395–402 (2009).  https://doi.org/10.1093/rpd/ncn317 CrossRefGoogle Scholar
  2. 2.
    K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates. Ann. Nucl. Energy 51, 81–93 (2013).  https://doi.org/10.1016/j.anucene.2012.08.024 CrossRefGoogle Scholar
  3. 3.
    S.P. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Ann. Nucl. Energy 35, 1093–1097 (2008).  https://doi.org/10.1016/j.anucene.2007.10.007 CrossRefGoogle Scholar
  4. 4.
    D. Sardari, A. Abbaspour, S. Baradaran et al., Estimation of gamma- and X-ray photons buildup factor in soft tissue with Monte Carlo method. Appl. Radiat. Isot. 67, 1438–1440 (2009).  https://doi.org/10.1016/j.apradiso.2009.02.033 CrossRefGoogle Scholar
  5. 5.
    A. Shimizu, H. Hirayama, Calculation of gamma-ray buildup factors up to depths of 100 mfp by the method of invariant embedding, (II) improved treatment of bremsstrahlung. J. Nucl. Sci. Technol. 40, 192–200 (2003).  https://doi.org/10.3327/jnst.40.192 CrossRefGoogle Scholar
  6. 6.
    Y. Harima, Y. Sakamoto, S. Tanaka et al., Validity of the geometric progression formula in approximating gamma ray buildup factors. Nucl. Sci. Eng. 94, 24–35 (1986).  https://doi.org/10.13182/NSE86-A17113 CrossRefGoogle Scholar
  7. 7.
    M. Kurudirek, Y. Kurucu, Estimation of energy absorption buildup factors of some human tissues at energies relevant to brachytherapy and external beam radiotherapy. Int. J. Radiat. Biol. Sep 17, 1–27 (2019).  https://doi.org/10.1080/09553002.2019.1665217 CrossRefGoogle Scholar
  8. 8.
    B. Mehmet, M. Kurudirek, Radiological properties of healthy, carcinoma and equivalent breast tissues for photon and charged particle interactions. Int. J. Radiat. Biol. 94(1), 70–78 (2018).  https://doi.org/10.1080/09553002.2018.1403057 CrossRefGoogle Scholar
  9. 9.
    American Nuclear Society, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials. Report ANSI/ANS-6.4.3, USA (1991)Google Scholar
  10. 10.
    S. Agostinelli, J. Allison, K. Amako et al., Geant4-a simulation toolkit. NIMA 506(3), 250–303 (2003).  https://doi.org/10.1016/S0168-9002(03)01368-8 CrossRefGoogle Scholar
  11. 11.
    J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. NIMA 835(1), 186–225 (2016).  https://doi.org/10.1016/j.nima.2016.06.125 CrossRefGoogle Scholar
  12. 12.
    C.H. Kim, S.H. Choi, J.H. Jeong et al., HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver. Phys. Med. Biol. 53(15), 4093–4106 (2008).  https://doi.org/10.1088/0031-9155/53/15/006 CrossRefGoogle Scholar
  13. 13.
    A. Alfuraih, O. Kadri, K. Alzimami, Investigation of SPECT/CT cardiac imaging using Geant4. Nucl. Sci. Tech. 29, 7 (2018).  https://doi.org/10.1007/s41365-018-0435-8 CrossRefGoogle Scholar
  14. 14.
    O. Kadri, K. Manai, A. Alfuraih, Monte Carlo study of the cardiac absorbed dose during x-ray examination of and adult patient. Radiat. Prot. Dosim. 171(4), 431–437 (2016).  https://doi.org/10.1093/rpd/ncv429 CrossRefGoogle Scholar
  15. 15.
    M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597 (National Bureau of Standards, Washington, 1987).  https://doi.org/10.2172/6016002 CrossRefGoogle Scholar
  16. 16.
    D.R. White, Tissue substitutes in experimental radiation physics. Med. Phys. 5(6), 467–479 (1978).  https://doi.org/10.1118/1.594456 CrossRefGoogle Scholar
  17. 17.
    L. Gerward, N. Guilbert, K.B. Jensen et al., WinXCom: a program for calculating x-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004).  https://doi.org/10.1016/j.radphyschem.2004.04.040 CrossRefGoogle Scholar
  18. 18.
    M. Kurudirek, Y. Ozdemir, Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence. J. Radiol. Prot. 31, 117–128 (2011).  https://doi.org/10.1088/0952-4746/31/1/008 CrossRefGoogle Scholar
  19. 19.
    Y. Harima, An approximation of gamma-ray buildup factors by modified geometrical progression. Nucl. Sci. Eng. 83(2), 299–309 (1983).  https://doi.org/10.13182/NSE83-A18222 CrossRefGoogle Scholar
  20. 20.
    M.J. Maron, Numerical Analysis: A Practical Approach (Macmillan, New York, 1987)zbMATHGoogle Scholar
  21. 21.
    S.R. Manohara, S.M. Hanagodimath, L. Gerward, Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics. J. Appl. Clin. Med. Phys. 12(4), 296–312 (2011).  https://doi.org/10.1120/jacmp.v12i4.3557 CrossRefGoogle Scholar
  22. 22.
    V.P. Singh, M.E. Medhat, N.M. Badiger, Assessment of exposure buildup factors of some oxide dispersion strengthened steels applied in modern nuclear engineering and designs. Nucl. Eng. Des. 270, 90–100 (2014).  https://doi.org/10.1016/j.nucengdes.2013.12.046 CrossRefGoogle Scholar
  23. 23.
    Y. Harima, S. Tanaka, Y. Sakamoto et al., Development of new gamma-ray buildup factor and application of shielding calculations. Nucl. Sci. Eng. 94, 24–35 (1991)CrossRefGoogle Scholar
  24. 24.
    I.O. Olarinoye, Photon buildup factors for some tissues and phantom materials for penetration depths up to 100 MFP. J. Nucl. Res. Dev. 13, 57–67 (2017)Google Scholar
  25. 25.
    Y. Sakamoto, D.K. Trubey, Radiation Safety Information Computation Center Data Package DLC-129/ANS643, Geometric Progression. Gamma-Ray Buildup Factor Coefficients (1991)Google Scholar
  26. 26.
    J.H. Smith, Flux to Dose Rate Conversion Factors for Gamma Ray Exposure. JPL technical report, no. 32-439 (1963)Google Scholar
  27. 27.
  28. 28.
    Y. Harima, N. Kurosawa, Y. Sakamoto, Parameter search of geometric-progression formula for gamma-ray isotropic point source buildup factors up to depths of 100 mfp, including contribution of secondary radiations. Progr. Nucl. Sci. Technol. 4, 548–552 (2014).  https://doi.org/10.15669/pnst.4.548 CrossRefGoogle Scholar
  29. 29.
    I. Jarrah, M.I. Radaideh, T. Kozlowski et al., Determination and validation of photon energy absorption buildup factor in human tissues using Monte Carlo simulation. Radiat. Phys. Chem. 160, 15–25 (2019).  https://doi.org/10.1016/j.radphyschem.2019.03.008 CrossRefGoogle Scholar
  30. 30.
    H.J. Hirayama, Calculation of gamma-ray exposure buildup factors up to 40 mfp using the EGS4 Monte Carlo code with a particle splitting. J. Nucl. Sci. Technol. 32(12), 1201–1207 (1995).  https://doi.org/10.3327/jnst.32.1201 CrossRefGoogle Scholar
  31. 31.
    M.M. Rafiei, H. Tavakoli-Anbaran, Calculation of the exposure buildup factors for x-ray photons with continuous energy spectrum using Monte Carlo code. J. Radiol. Prot. 38, 207 (2018).  https://doi.org/10.1088/1361-6498/aa9cfa CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Radiological Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.National Center for Nuclear Sciences and TechnologiesTunisTunisia

Personalised recommendations