Advertisement

Cryogenic system design for HIAF iLinac

  • Xiao-Fei Niu
  • Feng Bai
  • Xian-Jin Wang
  • Jun-Hui Zhang
  • Xiao-Hong Guo
  • Da-Ming SunEmail author
Article
  • 15 Downloads

Abstract

A helium cryogenic system is designed by the Institute of Modern Physics, Chinese Academy of Sciences, to supply different cooling powers to the cryomodules of ion-Linac (iLinac) accelerator, which serves as the injector of the High Intensity Heavy-Ion Accelerator Facility project. The iLinac is a superconducting heavy-ion accelerator approximately 100 m long and contains 13 cryomodules cooled by superfluid helium. This article describes the cryogenic system design of the iLinac accelerator. The requirements of the cryogenic system, such as cooling mode, refrigeration temperature, operating pressure and pressure stability, are introduced and described in detail. In addition, heat loads from different sources are analyzed and calculated quantitatively. An equivalent cooling capacity of 10 kW at 4.5 K was determined for the cryogenic system according to the total heat load. Furthermore, a system process design was conducted and analyzed in detail. Further, the system layout and the main equipment are presented.

Keywords

Ion-Linac (iLinac) accelerator Superfluid liquid helium Cryogenic system Cryomodule 

References

  1. 1.
    HIAF design report. IMP internal report. 2017Google Scholar
  2. 2.
    J.C. Yang, J.W. Xia, G.Q. Xiao et al., High intensity heavy ion accelerator facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res. 317(5), 263–265 (2013).  https://doi.org/10.1016/j.nimb.2013.08.046 CrossRefGoogle Scholar
  3. 3.
    X. Ma, W.Q. Wen, S.F. Zhang et al., HIAF: new opportunities for atomic physics with highly charged heavy ions. Nucl. Instrum. Methods Phys. Res. B. 408, 169–173 (2017).  https://doi.org/10.1016/j.nimb.2017.03.129 CrossRefGoogle Scholar
  4. 4.
    P. Li, Y.J. Yuan, J.C. Yang et al., The collimation system design for the Booster Ring in the HIAF project. Nucl. Instrum. Methods Phys. Res. A. 920, 14–21 (2018).  https://doi.org/10.1016/j.nima.2018.12.064 CrossRefGoogle Scholar
  5. 5.
    X.H. Zhou, Physics opportunities at the new facility HIAF. Nucl. Phys. Rev. 35(04), 339–349 (2018).  https://doi.org/10.11804/NuclPhysRev.35.04.339 CrossRefGoogle Scholar
  6. 6.
    P. Li, L. Bozyk, Z.Q. Dong et al., Dynamic vacuum simulation for the Booster Ring in the high-intensity heavy ion accelerator facility. Vacuum 163, 15–25 (2019).  https://doi.org/10.1016/j.vacuum.2019.02.004 CrossRefGoogle Scholar
  7. 7.
    G.Q. Xiao, H.S. Xu, S.C. Wang, CiADS and HIAF linac national research facilities: progress and prospect. Nucl. Phys. Rev. 34, 275–283 (2017).  https://doi.org/10.11804/NuclPhysRev.34.03.275. (in Chinese) CrossRefGoogle Scholar
  8. 8.
    C. Li, L. Sun, Y. He et al., Conceptual design of LEBT and RFQ for the HIAF linac. Nucl. Instrum. Methods Phys. Res., Sect. A 729, 426–433 (2013).  https://doi.org/10.1016/j.nima.2013.06.019 CrossRefGoogle Scholar
  9. 9.
    J.G. Weisend II, ESS accelerator cryogenic plant. HVAC&R Res. 20(3), 296–301 (2014)CrossRefGoogle Scholar
  10. 10.
    X.L. Wang, P. Arnold, W. Hees et al., ESS accelerator cryoplant process design. IOP Conf. Ser.: Mater. Sci. Eng. 101(1), 012012 (2015).  https://doi.org/10.1088/1757-899X/101/1/012012 CrossRefGoogle Scholar
  11. 11.
    L. Pei, J. Theilacker, A. Klebaner et al., The fermilab CMTF cryogenic distribution remote control system. AIP Conf. Proc. 1573, 1713–1719 (2014).  https://doi.org/10.1063/1.4860914 CrossRefGoogle Scholar
  12. 12.
    Z.Y. Jiang, X.F. Niu, P. Zhang, Cryomodule control system of injector II for accelerator driven sub-critical system. Atom. Energy Sci. Technol. 50(7), 1314–1319 (2016).  https://doi.org/10.7538/yzk.2016.50.07.1314. (in Chinese) CrossRefGoogle Scholar
  13. 13.
    D. Gonnella, R. Eichhorn, F. Furuta et al., Nitrogen-doped 9-cell cavity performance in a test cryomodule for LCLS-II. J. Appl. Phys. 117(2), 935–937 (2014).  https://doi.org/10.1063/1.4905681 CrossRefGoogle Scholar
  14. 14.
    E.F. Daly, V. Gianni, C.H. Rodeet al., SNS cryomodule heat load and thermal design. Office of Scientific and Technical information technical reports. 2001 https://digital.library.unt.edu/ark:/67531/metadc741462/m2/1/high_res_d/791556.pdf
  15. 15.
    J.G. Weisend II, D. Arenius, B. Bull et al., Conceptual design of the FRIB cryogenic system. AIP Conf. Proc. 1434, 94–101 (2012).  https://doi.org/10.1063/1.4706909 CrossRefGoogle Scholar
  16. 16.
    Z. Li, F. Tian, Z.Z. Wang et al., The design and research of helium recovery device. Cryog. Superconduct. 42, 1–5 (2014).  https://doi.org/10.16711/j.1001-7100.2014.05.006. (in Chinese) CrossRefGoogle Scholar
  17. 17.
    J. Fydrych, P. Arnold, W. Hees et al., Cryogenic distribution system for the ESS superconducting proton linac. Phys. Procedia. 67(4), 828–833 (2015).  https://doi.org/10.1016/j.phpro.2015.06.139 CrossRefGoogle Scholar
  18. 18.
    R.K. Sharma, P.K. Gupta, P.K. Kush, Design and development of 2 Kelvin J–T heat exchanger. National Symposium on Cryogenics and Superconductivity. 2017 https://www.researchgate.net/publication/314093331
  19. 19.
    R.J. Klimas, P. Mcintyre, J. Colvin et al., Large volume liquid helium relief device verification apparatus for the alpha magnetic spectrometer. AIP Conf. Proc. 1434, 309–316 (2012).  https://doi.org/10.1063/1.4706934 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiao-Fei Niu
    • 1
    • 2
  • Feng Bai
    • 2
  • Xian-Jin Wang
    • 2
  • Jun-Hui Zhang
    • 2
  • Xiao-Hong Guo
    • 2
  • Da-Ming Sun
    • 1
    Email author
  1. 1.Institute of Refrigeration and CryogenicZhejiang UniversityHangzhouChina
  2. 2.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations