Advertisement

Correction and verification of HL-2A Tokamak Bonner sphere spectrometer in monoenergetic neutron fields from 100 keV to 5 MeV

  • Bo-Wen ZhengEmail author
  • Chun-Yu Jiang
  • Zi-Hao Liu
  • Yin-Hai Pan
  • Xian-Ying Song
  • Shi-Biao Tang
  • Ze-Jie Yin
Article
  • 32 Downloads

Abstract

A real-time Bonner sphere spectrometer (BSS) has been developed for spectral neutron measurements with the HL-2A Tokamak. To correct and verify the accuracy of the neutron spectrum from the BSS, the BSS system was calibrated using monoenergetic neutron beams in the energy range of 100 keV–5 MeV. The response function of the BSS was corrected based on the calibration results, and the corrected BSS system was verified by unfolding monoenergetic neutron spectra. Fusion neutron spectra on the HL-2A have been obtained from the calibrated BSS system for the first time.

Keywords

Bonner sphere spectrometer Calibration Response function Neutron spectrometry 

References

  1. 1.
    H.W. Kugel, G. Ascione, J. Gilbert, Review of diagnostic methods for TFTR D–T radiation shielding and neutronics studies. Rev. Sci. Instrum. 68, 557 (1997).  https://doi.org/10.1063/1.1147652 CrossRefGoogle Scholar
  2. 2.
    M.T. Swinhoe, O.N. Jarvis, Measurement and calculation of the efficiency of fission detectors designed to monitor the time dependence of the neutron production of JET. Rev. Sci. Instrum. 56, 1093 (1985).  https://doi.org/10.1063/1.1138233 CrossRefGoogle Scholar
  3. 3.
    M. Hoek, T. Nishitani, Y. Ikeda et al., Neutron yield measurements by use of foil activation at JT-60U. Rev. Sci. Instrum. 66, 885 (1995).  https://doi.org/10.1063/1.1146527 CrossRefGoogle Scholar
  4. 4.
    H. Kim, H. Lee, S. Hong et al., Radioactivity evaluation for the KSTAR Tokamak. Radiat. Prot. Dos. 116, 24 (2005).  https://doi.org/10.1093/rpd/nci242 CrossRefGoogle Scholar
  5. 5.
    D. Liu, C. Zhou, Z. Cao et al., Construction of the HL-2A Tokamak. Fusion Eng. Des. 66–68, 147 (2003).  https://doi.org/10.1016/S0920-3796(03)00165-0 CrossRefGoogle Scholar
  6. 6.
    Q. Li, Brief introduction to engineering and experiment of HL-2A Tokamak. At. Energy Sci. Technol. 43, 204 (2009). (in Chinese) Google Scholar
  7. 7.
    Y. Liu, X. Ding, Q. Yang et al., Recent advances in the HL-2A Tokamak experiments. Nucl. Fusion 45, S239–S244 (2005).  https://doi.org/10.1088/0029-5515/45/10/S19 CrossRefGoogle Scholar
  8. 8.
    I. Klimek, M. Cecconello, M. Gorelenkova et al., TRANSP modelling of total and local neutron emission on MAST. Nucl. Fusion. 55, 023003 (2015).  https://doi.org/10.1088/0029-5515/55/2/023003 CrossRefGoogle Scholar
  9. 9.
    R.L. Bramblett, R.I. Ewing, T.W. Bonner, A new type of neutron spectrometer. Nucl. Instrum. Methods. 9, 1 (1960).  https://doi.org/10.1016/0029-554X(60)90043-4 CrossRefGoogle Scholar
  10. 10.
    D.J. Thomas, A.V. Alevra, Bonner sphere spectrometers: a critical review. Nucl. Instrum. Methods A. 476, 12–20 (2002).  https://doi.org/10.1016/S0168-9002(01)01379-1 CrossRefGoogle Scholar
  11. 11.
    J. Cao, C. Jiang, H. Cao et al., Experimental validation of a Tokamak neutron spectrometer based on Bonner spheres. Chin. Phys. C. 39(8), 086001 (2015).  https://doi.org/10.1088/1674-1137/39/8/086001 CrossRefGoogle Scholar
  12. 12.
    C. Jiang, J. Cao, X. Jiang et al., Real-time bonner sphere spectrometry on the HL-2A Tokamak. Plasma Sci. Technol. 18, 699 (2016).  https://doi.org/10.1088/1009-0630/18/6/19 CrossRefGoogle Scholar
  13. 13.
    J. Cao, X. Jiang, C. Jiang et al., Calculation of response function for bonner sphere spectrometer based on Geant4. Plasma Sci. Technol 17, 80 (2015).  https://doi.org/10.1088/1009-0630/17/1/15 CrossRefGoogle Scholar
  14. 14.
    S. Agostinelli, J. Allison, K. Amako et al., Geant4: a simulation toolkit. Nucl. Instrum. Methods A. 506, 250–303 (2003).  https://doi.org/10.1016/S0168-9002(03)01368-8 CrossRefGoogle Scholar
  15. 15.
    R. Bedogni, A. Pola, M. Costa et al., A Bonner sphere spectrometer based on a large 6LiI(Eu) scintillator: calibration in reference monoenergetic fields. Nucl. Instrum. Methods A. 897, 18–21 (2018).  https://doi.org/10.1016/j.nima.2018.04.040 CrossRefGoogle Scholar
  16. 16.
    R.M. Howell, E.A. Burgett, B. Wiegel et al., Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry. Radiat. Meas. 45(10), 1233–1237 (2010).  https://doi.org/10.1016/j.radmeas.2010.09.003 CrossRefGoogle Scholar
  17. 17.
    B. Wiegel, A.V. Alevra, NEMUS: the PTB neutron multisphere spectrometer—Bonner spheres and more. Nucl. Instrum. Methods A. 476, 36–41 (2002).  https://doi.org/10.1016/S0168-9002(01)01385-7 CrossRefGoogle Scholar
  18. 18.
    H. Sun, X. Luo, C. Li et al., The measurement of neutron flux using 197Au neutron activation from static accelerator. Nucl. Electron. Detect. Technol. 30, 288–295 (2010).  https://doi.org/10.3969/j.issn.0258-0934.2010.02.032. (In Chinese) CrossRefGoogle Scholar
  19. 19.
    Z. Zhu, Y. Hua, W. Chen et al., Efficiency calibration of long counter and its application. J. Sichuan Univ. (Natural Science Edition) 52, 1303 (2015).  https://doi.org/10.3969/j.issn.0490-6756.2015.11.021. (in Chinese) CrossRefGoogle Scholar
  20. 20.
    C. Birattari, E. Dimovasili, A. Mitaroff et al., A Bonner sphere spectrometer with extended response matrix. Nucl. Instrum. Methods A. 620, 260–269 (2010).  https://doi.org/10.1016/j.nima.2010.04.033 CrossRefGoogle Scholar
  21. 21.
    T. Peng, X. Luo, C. Zhang et al., Study on calibration of neutron efficiency and relative photo-yield of plastic scintillator. Nucl. Phys. Rev. 19(3), 57–60 (2002).  https://doi.org/10.11804/NuclPhysRev.19.03.357. (in Chinese) CrossRefGoogle Scholar
  22. 22.
    V. Lacoste, V. Gressier, J.L. Pochat et al., Characterization of Bonner sphere system at monoenergetic and thermal neutron fields. Radiat. Prot. Dosim. 110(1–4), 529–532 (2004).  https://doi.org/10.1093/rpd/nch279 CrossRefGoogle Scholar
  23. 23.
    T. Ogata, S. Kudo, Y. Watanabe et al., The calibration of Bonner sphere spectrometer. Radiat. Prot. Dosim. 146(1–3), 107–110 (2011).  https://doi.org/10.1093/rpd/ncr123 CrossRefGoogle Scholar
  24. 24.
    A. Cheminet, V. Lacoste, V. Gressier et al., Characterization of the IRSN neutron multisphere spectrometer (HERMEIS) at European standard calibration fields. J. Instrum. 7, C04007 (2012).  https://doi.org/10.1088/1748-0221/7/04/C04007 CrossRefGoogle Scholar
  25. 25.
    A. Alevra, D. Thomas, Neutron spectrometry in mixed fields: multisphere spectrometer. Radiat. Prot. Dosim. 107, 37–72 (2003).  https://doi.org/10.1093/oxfordjournals.rpd.a0063848 CrossRefGoogle Scholar
  26. 26.
    R. Bedogni, C. Domingo, A. Esposito et al., FRUIT: an operational tool for multisphere neutron spectrometry in workplaces. Nucl. Instrum. Methods A. 580, 1301–1309 (2007).  https://doi.org/10.1016/j.nima.2007.07.033 CrossRefGoogle Scholar
  27. 27.
    M. Matzke, Unfolding procedures. Radiat. Prot. Dosim. 107, 155–174 (2003).  https://doi.org/10.1093/oxfordjournals.rpd.a006384 CrossRefGoogle Scholar
  28. 28.
    C.S. Zaidins, J.B. Martin, F.M. Edwards, A least-squares technique for extracting neutron spectra from Bonner sphere data. Med. Phys. 5, 42–45 (1978).  https://doi.org/10.1118/1.594464 CrossRefGoogle Scholar
  29. 29.
    J. Cao, C. Jiang, Q. Yang et al., Verification of a fusion neutron diagnostic Bonner sphere spectrometer on measurement of a 241Am–Be neutron source. Nucl. Sci. Tech. 27, 127 (2016).  https://doi.org/10.1007/s41365-016-0126-2 CrossRefGoogle Scholar
  30. 30.
    A. Esposito, M. Nandy, Measurement and unfolding of neutron spectra using Bonner spheres. Radiat. Prot. Dosim. 110(1–4), 555–558 (2004).  https://doi.org/10.1093/rpd/nch385 CrossRefGoogle Scholar
  31. 31.
    W.Y. Hong, L.W. Yan, K.J. Zhao et al., Experimental observation of divertor configuration and ECRH on the HL-2A Tokamak. Nucl. Fusion. Plasma. Phys. 27(1), 7–11 (2007).  https://doi.org/10.3969/j.issn.0254-6086.2007.01.002. (in Chinese) CrossRefGoogle Scholar
  32. 32.
    Z.M. Hu, X.F. Xie, Z.J. Chen et al., Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the experimental advanced superconducting Tokamak experimental hall. Rev. Sci. Instrum. 85, 11E417 (2014).  https://doi.org/10.1063/1.4891163 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bo-Wen Zheng
    • 1
    • 2
    Email author
  • Chun-Yu Jiang
    • 1
    • 2
  • Zi-Hao Liu
    • 1
    • 2
  • Yin-Hai Pan
    • 1
    • 2
  • Xian-Ying Song
    • 3
  • Shi-Biao Tang
    • 1
    • 2
  • Ze-Jie Yin
    • 1
    • 2
  1. 1.State Key Laboratory of Particle Detection and ElectronicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Southwestern Institute of PhysicsChengduChina

Personalised recommendations