Advertisement

Monte Carlo assessment of coded aperture tool for breast imaging: a Mura-mask case study

  • O. KadriEmail author
  • A. Alfuraih
Article
  • 19 Downloads

Abstract

The main purpose of this work was to perform a rigorous computational study on scintimammography with a Mura-mask based on Monte Carlo simulation of voxelized breast phantoms. Three main objectives were addressed: (1) verification of Geant4 version 10.4, (2) optimization of the imaging setup, and (3) small tumor detection and localization. We successfully verified the Geant4-based imaging of a commonly used phantom in the field. We used a Mura-mask with a \(41\times 41\) array pattern with adjustable thickness, material, and hole shape (box and cylinder); a low-energy high-resolution collimator with different hole shapes (cylinder and hexagon); and a voxelized breast phantom with different sizes (small, medium, and large) and glandularity percentages (low, medium, and high). We also compared the detector crystal outputs of CdZnTe and NaI(Tl). The simulation was followed by a deconvolution procedure, and the data (images) were statistically emphasized. Statistical metrics indicate that the Mura-mask (W material with 1.5 mm thickness and box holes) combined with a CdZnTe detector leads to the optimum point spread function. Finally, a preliminary study on small-sized tumor detection and localization was conducted with different tumor-to-background ratios (from 2 to 12). Tumors with diameters of 5 and 8 mm could be detected, while those of 2 mm were undetectable. Nevertheless, this study enhances our understanding of the early detection of tumors in the field of scintimammography.

Keywords

Geant4 Voxelized breast phantom Scintimammography Mura-mask 

References

  1. 1.
    F. Bray, J. Ferlay, I. Soerjomataram et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).  https://doi.org/10.3322/caac.21492 CrossRefGoogle Scholar
  2. 2.
    E. Bombardieri, C. Aktolun, R.P. Baum et al., Breast scintigraphy: procedure guidelines for tumour imaging. Eur. J. Nucl. Med. Mol. Imaging 30(12), Bp107–114 (2003).  https://doi.org/10.1007/s00259-003-1354-3 CrossRefGoogle Scholar
  3. 3.
    D.B. Pelowitz, MCNPX Users Manual Version 2.6.0. LA-CP-07-1473 (Los Alamos National Laboratory, Los Alamos, 2007)Google Scholar
  4. 4.
    I. Kawrakow, Accurate condensed history monte carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med. Phys. 27(3), 485–498 (2000).  https://doi.org/10.1118/1.598917 CrossRefGoogle Scholar
  5. 5.
    J. Baro, J. Sempau, J.M. Fernandez-Varea et al., Penelope: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl. Instrum. Methods B. 100(1), 31–46 (1995).  https://doi.org/10.1016/0168-583X(95)00349-5 CrossRefGoogle Scholar
  6. 6.
    A. Ferrari, P.R. Sala, A. Fasso et al., FLUKA: a multi-particle transport code. CERN 2005-10, INFN/TC\_05/11, SLAC-R-773 (2005)Google Scholar
  7. 7.
    S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506(3), 250–303 (2003).  https://doi.org/10.1016/S0168-9002(03)01368-8 CrossRefGoogle Scholar
  8. 8.
    S. Jan, G. Santin, D. Strul et al., GATE—Geant4 application for tomographic emission: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004).  https://doi.org/10.1088/0031-9155/49/19/007 CrossRefGoogle Scholar
  9. 9.
    A. Alfuraih, O. Kadri, K. Alzimami, Investigation of SPECT/CT cardiac imaging using Geant4. Nucl. Sci. Tech. 29, 105 (2018).  https://doi.org/10.1007/s41365-018-0435-8 CrossRefGoogle Scholar
  10. 10.
    W.P. Segars, B.M. Tsui, Study of the efficacy of respiratory gating in myocardial SPECT using the new 4D NCAT phantom. IEEE Trans. Nucl. Sci. 49(3), 675–679 (2002).  https://doi.org/10.1109/tns.2002.1039548 CrossRefGoogle Scholar
  11. 11.
    L.S. Boia, A.F. Menezes, M.A.C. Cardoso et al., Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation. Appl. Radiat. Isot. 70(1), 144–148 (2012).  https://doi.org/10.1016/j.apradiso.2011.08.017 CrossRefGoogle Scholar
  12. 12.
    E. Caroli, J.B. Stephen, G. Di Cocco et al., Coded aperture imaging in X- and gamma-ray astronomy. Space Sci. Rev. 45(3–4), 349–403 (1987).  https://doi.org/10.1007/BF00171998 CrossRefGoogle Scholar
  13. 13.
    K. McMillan, P. Marleau, E. Brubaker, Random mask optimization for fast neutron coded aperture imaging. SAND2015-4109JGoogle Scholar
  14. 14.
    R.H. Dicke, Scatter-hole cameras for x-rays and gamma rays. Astrophys. J. 153, L101 (1968)CrossRefGoogle Scholar
  15. 15.
    E.E. Fenimore, T.M. Cannon, Coded aperture imaging with uniformly redundant arrays. Appl. Opt. 17(3), 337–347 (1978).  https://doi.org/10.1364/AO.17.000337 CrossRefGoogle Scholar
  16. 16.
    M.J. Cieslak, K.A.A. Gamage, R. Glover et al., Gamma-ray modulation properties of tungsten coded apertures for a novel mixed-field imaging system. JINST 14(02), P02007 (2019).  https://doi.org/10.1088/1748-0221/14/02/P02007 CrossRefGoogle Scholar
  17. 17.
    M. Alnafea, K. Wells, N.M. Spyrou et al., Preliminary Monte Carlo study of coded aperture imaging with a CZT gamma camera system for scintimammography. Nucl. Instrum. Methods A 573, 122–125 (2007).  https://doi.org/10.1016/j.nima.2006.11.007 CrossRefGoogle Scholar
  18. 18.
    S.R. Gottesman, E.J. Schneid, PNP—a new class of coded aperture arrays. IEEE Trans. Nucl. Sci. 33(1), 745–749 (1986).  https://doi.org/10.1109/TNS.1986.4337206 CrossRefGoogle Scholar
  19. 19.
    A. Martineau, J.M. Rocchisani, J.L. Moretti, Coded aperture optimization using Monte Carlo simulations. Nucl. Instrum. Methods A 616, 75–80 (2010).  https://doi.org/10.1016/j.nima.2010.02.261 CrossRefGoogle Scholar
  20. 20.
    I. Odinaka, J.A. O’Sullivan, D.G. Politte et al., Joint system and algorithm design for computationally efficient fan beam coded aperture X-ray coherent scatter imaging. IEEE Trans. Comput. Imaging 3(4), 506–521 (2017).  https://doi.org/10.1109/TCI.2017.2721742 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Seret Alain, Hot and cold contrasts in high-resolution Tc-99m planar scintigraphy: a survey of fifty-two camera heads using the PICKER thyroid phantom. Phys. Med. 26(3), 166–172 (2010).  https://doi.org/10.1016/j.ejmp.2009.06.003 CrossRefGoogle Scholar
  22. 22.
    S.L. Bugby, J.E. Lees, A.H. Ng et al., Investigation of an SFOV hybrid gamma camera for thyroid imaging. Phys. Med. 32(1), 290–296 (2016).  https://doi.org/10.1016/j.ejmp.2015.12.002 CrossRefGoogle Scholar
  23. 23.
    K. Bliznakova, Z. Bliznakov, V. Bravou et al., A three-dimensional breast software phantom for mammography simulation. Phys. Med. Biol. 48, 3699–3719 (2003).  https://doi.org/10.1088/0031-9155/48/22/006 CrossRefGoogle Scholar
  24. 24.
    A. John, G. Laurent, K. Akinori et al., The Geant4 visualization system—a multi-driver graphics system. Int. J. Model. Simul. Sci. 04(supp01), 1340001 (2013).  https://doi.org/10.1142/s1793962313400011 CrossRefGoogle Scholar
  25. 25.
    L. Vieira, T.F. Vaz, D.C. Costa et al., Monte Carlo simulation of the basic features of the GE Millennium MG single photon emission computed tomography gamma camera. Rev. Esp. Med. Nucl. Imagen Mol. 33(1), 6–13 (2014).  https://doi.org/10.1016/j.remn.2013.03.009 CrossRefGoogle Scholar
  26. 26.
    M.P. Garcia, D. Villoing, E. McKay et al., TestDose: a nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry. Med. Phys. 42(12), 6885–6894 (2015).  https://doi.org/10.1118/1.4934828 CrossRefGoogle Scholar
  27. 27.
  28. 28.
    J. Allison, K. Amako, J. Apostolakis et al., Recent developments in GEANT4. Nucl. Instrum. Methods A 835, 186–225 (2016).  https://doi.org/10.1016/j.nima.2016.06.125 CrossRefGoogle Scholar
  29. 29.
    G. Cosmo and the Geant4 Collaboration, Geant4—towards major release 10. J. Phys. Conf. Ser. 513, 022005 (2014).  https://doi.org/10.1088/1742-6596/513/2/022005 Google Scholar
  30. 30.
    M.J. Cieslak, K.A. Gamage, R. Glover, Coded-aperture imaging systems: past, present and future development—a review. Radiat. Meas. 92, 59–71 (2016).  https://doi.org/10.1016/j.radmeas.2016.08.002 CrossRefGoogle Scholar
  31. 31.
    A. Haboub, A. MacDowell, S. Marchesini et al., Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications. United States: N. p (2013). https://www.osti.gov/servlets/purl/1171122. Accessed 15 May 2019
  32. 32.
    R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice Hall, Upper Saddle River, 2008)Google Scholar
  33. 33.
    Kalpana Chaurasia, Mrs Nidhi Sharma, Performance evaluation and comparison of different noise, apply on PNGImage format used in deconvolution Wiener filter (FFT) algorithm. Evolv. Trends Eng. Technol. 4, 8–14 (2015).  https://doi.org/10.18052/www.scipress.com/ETET.4.8 CrossRefGoogle Scholar
  34. 34.
    G.R. Hammerstein, D.W. Miller, D.R. White et al., Absorbed radiation dose in mammography. Radiology 130(2), 485–91 (1979).  https://doi.org/10.1148/130.2.485 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Radiological Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.National Center for Nuclear Sciences and TechnologiesTunisTunisia

Personalised recommendations