Advertisement

An efficient method for mapping the \({}^{12}\hbox {C}+{}^{12}\hbox {C}\) molecular resonances at low energies

  • Xiao-Dong Tang
  • Shao-Bo Ma
  • Xiao FangEmail author
  • Brian Bucher
  • Adam Alongi
  • Craig Cahillane
  • Wan-Peng Tan
Article

Abstract

The \({}^{12}\)C+\({}^{12}\)C fusion reaction is famous because of its complication of molecular resonances, and it plays an important role in both nuclear structural research and astrophysics. It is extremely difficult to measure the cross sections of \({}^{12}\)C+\({}^{12}\)C fusions at energies of astrophysical relevance because of the very low reaction yields. To measure the complicated resonant structure that exists in this important reaction, an efficient thick target method has been developed and applied for the first time at energies \(E_{\mathrm{c.m.}}<5.3\) MeV. A scan of the cross sections over a relatively wide range of energies can be carried out using only a single beam energy. The result of measurement at \(E_{\mathrm{c.m.}}= 4.1\) MeV is compared with results from previous work. This method will be useful for searching for potentially existing resonances of \({}^{12}\hbox {C}+{}^{12}\hbox {C}\) in the energy range 1 MeV\(< E_{\mathrm{c.m.}}<\)3 MeV.

Keywords

\({}^{12}\)C+\({}^{12}\)Molecular resonance Thick target method \({}^{12}\)C(\({}^{12}\)C, p)\({}^{23}\)Na 

References

  1. 1.
    D.A. Bromley, J.A. Kuehner, E. Almqvist, Resonant elastic scattering of C\(^{12}\) by carbon. Phys. Rev. Lett. 4, 365 (1960).  https://doi.org/10.1103/PhysRevLett.4.365 CrossRefGoogle Scholar
  2. 2.
    E. Almqvist, D.A. Bromley, J.A. Kuehner, Resonances in C\(^{12}\) on carbon reactions. Phys. Rev. Lett. 4, 515 (1960).  https://doi.org/10.1103/PhysRevLett.4.515 CrossRefGoogle Scholar
  3. 3.
    Nuclear Science Advisory Committee, The 2015 long range plan for nuclear science, 2015Google Scholar
  4. 4.
    E.R. Cosman, T.M. Cormier, K. Van Bibber et al., Evidence for a \({}^{12}\)C+\({}^{12}\)C collective band in \(^{24}\)Mg. Phys. Rev. Lett. 35, 265 (1975).  https://doi.org/10.1103/PhysRevLett.35.265 CrossRefGoogle Scholar
  5. 5.
    N. Cindro, F. Coçu, J. Uzureau et al., Evidence for a rotational band in \(^{24}\)Mg and its fragmentation: A rotation-vibration coupling? Phys. Rev. Lett. 39, 1135 (1977).  https://doi.org/10.1103/PhysRevLett.39.1135 CrossRefGoogle Scholar
  6. 6.
    H. Chandra, U. Mosel, Molecular configurations in heavy-ion collisions. Nucl. Phys. A 298, 151–168 (1978).  https://doi.org/10.1016/0375-9474(78)90013-1 CrossRefGoogle Scholar
  7. 7.
    J.A. Patterson, H. Winkler, C.S. Zaidins, Experimental investigation of the stellar nuclear reaction \(^{12}\)C + \(^{12}\)C at low energies. Astrophys. J. 157, 367 (1969).  https://doi.org/10.1086/150073 CrossRefGoogle Scholar
  8. 8.
    M.G. Mazarakis, W.E. Stephens, Experimental measurements of the \({}^{12}\)C+\({}^{12}\)C nuclear reactions at low energies. Phys. Rev. C 7, 1280 (1973).  https://doi.org/10.1103/PhysRevC.7.1280 CrossRefGoogle Scholar
  9. 9.
    M.D. High, B. Čujec, The \({}^{12}\)C+\({}^{12}\)C sub-Coulomb fusion cross section. Nucl. Phys. A 282, 181–188 (1977).  https://doi.org/10.1016/0375-9474(77)90179-8 CrossRefGoogle Scholar
  10. 10.
    K.U. Kettner, H. Lorenz-Wirzba, C. Rolfs et al., Study of the fusion reaction \({}^{12}\)C+\({}^{12}\)C below the Coulomb barrier. Phys. Rev. Lett. 38, 337 (1977).  https://doi.org/10.1103/PhysRevLett.38.337 CrossRefGoogle Scholar
  11. 11.
    H.W. Becker, K.U. Kettner, C. Rolfs et al., The \({}^{12}\)C+\({}^{12}\)C reaction at sub-Coulomb energies (II). Z. Physik A 303, 305–312 (1981).  https://doi.org/10.1007/BF01421528 CrossRefGoogle Scholar
  12. 12.
    L.R. Gasques, L.C. Chamon, D. Pereira et al., Global and consistent analysis of the heavy-ion elastic scattering and fusion processes. Phys. Rev. C 69, 034603 (2004).  https://doi.org/10.1103/PhysRevC.69.034603 CrossRefGoogle Scholar
  13. 13.
    E.F. Aguilera, P. Rosales, E. Martinez-Quiroz et al., New \(\gamma\)-ray measurements for \({}^{12}\)C+\({}^{12}\)C sub-Coulomb fusion: toward data unification. Phys. Rev. C 73, 064601 (2006).  https://doi.org/10.1103/PhysRevC.73.064601 CrossRefGoogle Scholar
  14. 14.
    T. Spillane, F. Raiola, C. Rolfs et al., \({}^{12}\)C+\({}^{12}\)C fusion reactions near the Gamow energy. Phys. Rev. Lett. 98, 122501 (2007).  https://doi.org/10.1103/PhysRevLett.98.122501 CrossRefGoogle Scholar
  15. 15.
    X. Fang, B. Bucher, A. Howard et al., Nucl. Instrum. Methods Phys. Res. A 871, 35–41 (2017).  https://doi.org/10.1016/j.nima.2017.07.050 CrossRefGoogle Scholar
  16. 16.
    J. Zickefoose, A. Di Leva, F. Strieder et al., Measurement of the \({}^{12}\)C(\({}^{12}\)C, \({\text{p}}\))\({}^{23}\)Na cross section near the Gamow energy. Phys. Rev. C 97, 065806 (2018).  https://doi.org/10.1103/PhysRevC.97.065806 CrossRefGoogle Scholar
  17. 17.
    H. Pais, F. Gulminelli, C. Providência et al., Light and heavy clusters in warm stellar matter. Nucl. Sci. Tech. 29, 181 (2018).  https://doi.org/10.1007/s41365-018-0518-6 CrossRefGoogle Scholar
  18. 18.
    C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)Google Scholar
  19. 19.
    William A. Fowler, Experimental and theoretical nuclear astrophysics: the quest for the origin of the elements. Rev. Mod. Phys. 56, 149 (1984).  https://doi.org/10.1103/RevModPhys.56.149 CrossRefGoogle Scholar
  20. 20.
    J.F. Ziegler, Website. www.srim.org. Accessed March 2019
  21. 21.
    M. Heine et al., The STELLA apparatus for particle-gamma coincidence fusion measurements with nanasecond timing. Nucl. Instrum. Methods Phys. Res. A 903, 1–7 (2018).  https://doi.org/10.1016/j.nima.2018.06.058 CrossRefGoogle Scholar
  22. 22.
    C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48, 2127 (2010).  https://doi.org/10.1016/j.carbon.2010.01.058 CrossRefGoogle Scholar
  23. 23.
    B. Bucher, X. Tang, X. Fang et al., First direct measurement of \({}^{12}\)C(\({}^{12}\)C,\(\text{n}\))\({}^{23}\)Mg at stellar energies. Phys. Rev. Lett. 114, 251102 (2015).  https://doi.org/10.1103/PhysRevLett.114.251102 CrossRefGoogle Scholar
  24. 24.
    X. Fang, W.P. Tan, M. Beard, R.J. deBoer et al., Experimental measurement of \({}^{12}\)C+\({}^{16}\)O fusion at stellar energies. Phys. Rev. C 96, 045804 (2017).  https://doi.org/10.1103/PhysRevC.96.045804 CrossRefGoogle Scholar
  25. 25.
    W.P. Liu et al., (JUNA Collaboration), Progress of Jinping Underground laboratory for Nuclear Astrophysics. Sci. China Phys. Mech. Astron. 59, 642001 (2016).  https://doi.org/10.1007/s11433-016-5785-9 CrossRefGoogle Scholar
  26. 26.
    J.P. Cheng et al., The China Jinping underground laboratory and its early science. Annu. Rev. Nucl. Part. Sci. 67, 231–251 (2017).  https://doi.org/10.1146/annurev-nucl-102115-044842 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiao-Dong Tang
    • 1
    • 2
  • Shao-Bo Ma
    • 1
    • 2
  • Xiao Fang
    • 3
    Email author
  • Brian Bucher
    • 4
  • Adam Alongi
    • 5
  • Craig Cahillane
    • 5
  • Wan-Peng Tan
    • 5
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.School of Nuclear Science and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Sino-French Institute of Nuclear Engineering and TechnologySun Yat-sen UniversityZhuhaiChina
  4. 4.Idaho National LaboratoryIdaho FallsUSA
  5. 5.Institute for Structure and Nuclear AstrophysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations