Advertisement

Application of global variance reduction method to calculate a high-resolution fast neutron flux distribution for TMSR-SF1

  • Pu Yang
  • Ye Dai
  • Yang Zou
  • Rui Yan
  • Bo Zhou
  • Shi-He Yu
  • Yu-Wen MaEmail author
Article
  • 15 Downloads

Abstract

The solid fuel thorium molten salt reactor (TMSR-SF1) is a 10-MWth fluoride-cooled pebble bed reactor. As a new reactor concept, one of the major limiting factors to reactor lifetime is radiation-induced material damage. The fast neutron flux (E > 0.1 MeV) can be used to assess possible radiation damage. Hence, a method for calculating high-resolution fast neutron flux distribution of the full-scale TMSR-SF1 reactor is required. In this study, a two-step subsection approach based on MCNP5 involving a global variance reduction method, referred to as forward-weighted consistent adjoint-driven importance sampling, was implemented to provide fast neutron flux distribution throughout the TMSR-SF1 facility. In addition, instead of using the general source specification cards, the user-provided SOURCE subroutine in MCNP5 source code was employed to implement a source biasing technique specialized for TMSR-SF1. In contrast to the one-step analog approach, the two-step subsection approach eliminates zero-scored mesh tally cells and obtains tally results with extremely uniform and low relative uncertainties. Furthermore, the maximum fast neutron fluxes of the main components in TMSR-SF1 are provided, which can be used for radiation damage assessment of the structural materials.

Keywords

TMSR-SF1 Fast neutron flux Global variance reduction MCNP 

References

  1. 1.
    C.W. Forsberg, P.F. Peterson, P.S. Pickard, Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity. Nucl. Technol. 144(3), 289–302 (2003).  https://doi.org/10.13182/nt03-1 CrossRefGoogle Scholar
  2. 2.
    M. Fratoni, E. Greenspan, Neutronic feasibility assessment of liquid salt-cooled pebble bed reactors. Nucl. Sci. Eng. 168(1), 1–22 (2011).  https://doi.org/10.13182/nse10-38 CrossRefGoogle Scholar
  3. 3.
    M.H. Jiang, H.J. Xu, Z.M. Dai, Advanced fission energy program—TMSR nuclear energy system. Bull. Chin. Acad. Sci. 27, 366–374 (2012).  https://doi.org/10.3969/j.issn.1000-3045.2012.03.016 (in Chinese)CrossRefGoogle Scholar
  4. 4.
    X.Z. Cai, Z.M. Dai, H.J. Xu, Thorium molten salt reactor nuclear energy system. Physics 45(9), 578–590 (2016).  https://doi.org/10.7693/wl20160904 (in Chinese)CrossRefGoogle Scholar
  5. 5.
    R.M. Ji, M.H. Li, Y. Zou et al., Impact of photoneutrons on reactivity measurements for TMSR-SF1. Nucl. Sci. Tech. 28, 76 (2017).  https://doi.org/10.1007/s41365-017-0234-7 CrossRefGoogle Scholar
  6. 6.
    R.M. Ji, Y. Dai, G.F. Zhu et al., Evaluation of the fraction of delayed photoneutrons for TMSR-SF1. Nucl. Sci. Tech. 28, 135 (2017).  https://doi.org/10.1007/s41365-017-0285-9 CrossRefGoogle Scholar
  7. 7.
    M.A. Cooper, E.W. Larsen, Automated weight windows for global Monte Carlo particle transport calculations. Nucl. Sci. Eng. 137, 1 (2001).  https://doi.org/10.13182/nse00-34 CrossRefGoogle Scholar
  8. 8.
    A. Davis, A. Turner, Comparison of global variance reduction techniques for Monte Carlo radiation transport simulations of ITER. Fusion Eng. Des. 86, 2698–2700 (2011).  https://doi.org/10.1016/j.fusengdes.2011.01.059 CrossRefGoogle Scholar
  9. 9.
    X.C. Nie, J. Li, S.L. Liu et al., Global variance reduction method for global Monte Carlo particle transport simulations of CFETR. Nucl. Sci. Tech. 28, 115 (2017).  https://doi.org/10.1007/s41365-017-0270-3 CrossRefGoogle Scholar
  10. 10.
    T. Shi, J. Ma, H. Huang et al., A new global variance reduction technique based on pseudo flux method. Nucl. Eng. Des. 324, 18–26 (2017).  https://doi.org/10.1016/j.nucengdes.2017.08.001 CrossRefGoogle Scholar
  11. 11.
    J.C. Wagner, E.D. Blakeman, D.E. Peplow, Forward-weighted CADIS method for global variance reduction. Trans. Am. Nucl. Soc. 97, 630–633 (2007)Google Scholar
  12. 12.
    T.M. Evans, A.S. Stafford, K.T. Clarno, Denovo—a new three-dimensional parallel discrete ordinates code in SCALE. Nucl. Technol. 171, 171–200 (2010).  https://doi.org/10.13182/nt10-05 CrossRefGoogle Scholar
  13. 13.
    J.F. Briesmeister, MCNP™—A General Monte Carlo N-Particle Transport Code. Version 4C, LA-13709-M, Manual (Los Alamos National Laboratory, Los Alamos, 2000)Google Scholar
  14. 14.
    T.E. Booth, R.A. Forster, R.L. Martz, MCNP variance reduction developments in the 21st century. Nucl. Technol. 180(3), 355–371 (2012).  https://doi.org/10.13182/nt12-a15349 CrossRefGoogle Scholar
  15. 15.
    G.I. Bell, S. Glasstone, Nuclear Reactor Theory (Van Nostrand and Reinhold, New York, 1967)Google Scholar
  16. 16.
    M.H. Kalos, P.A. Whitlock, Monte Carlo Methods—Volume 1: Basics (Wiley, New York, 1986)CrossRefGoogle Scholar
  17. 17.
    L. Cranberg, G. Frye, N. Nereson, L. Rosen, Fission Neutron Spectrum of 235U. Phys. Rev. 103, 662–670 (1956).  https://doi.org/10.1103/PhysRev.103.662 CrossRefGoogle Scholar
  18. 18.
    A. Vasiliev, H. Ferroukhi, M.A. Zimmermann et al., Development of a CASMO-4/SIMULATE-3/MCNPX calculation scheme for PWR fast neutron fluence analysis and validation against RPV scraping test data. Ann. Nucl. Energy 34, 615–627 (2007).  https://doi.org/10.1016/j.anucene.2007.02.020 CrossRefGoogle Scholar
  19. 19.
    J.C. Wagner, D.E. Peplow, S.W. Mosher, FW-CADIS method for global and regional variance reduction of Monte Carlo radiation transport calculations. Nucl. Sci. Eng. 176(1), 37–57 (2014).  https://doi.org/10.13182/nse12-33 CrossRefGoogle Scholar
  20. 20.
    A. Haghighat, H. Hiruta, B. Petrovic et al., Performance of the automated adjoint accelerated MCNP (A3 MCNP) for simulation of a BWR core shroud problem, in Proceedings of International Conference on Mathematics and Computation, Reactor Physics, and Environmental Analysis in Nuclear Applications, Madrid, Spain, 27–30 September 1999Google Scholar
  21. 21.
    X-5 Team Monte Carlo, MCNP—A General Monte Carlo N-Particle Transport Code, Version 5 Volume I: Overview and Theory (Los Alamos National Laboratory, Los Alamos, 2003)Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pu Yang
    • 1
    • 2
  • Ye Dai
    • 1
  • Yang Zou
    • 1
  • Rui Yan
    • 1
  • Bo Zhou
    • 1
    • 2
  • Shi-He Yu
    • 1
  • Yu-Wen Ma
    • 1
    • 2
    Email author
  1. 1.Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations