Advertisement

Conceptual design and update of the 128-channel μSR prototype spectrometer based on musrSim

  • Zi-Wen Pan
  • Jing-Yu Dong
  • Xiao-Jie Ni
  • Lu-Ping Zhou
  • Jing-Yu Tang
  • Daniel E. Pooley
  • Stephen P. Cottrell
  • Bang-Jiao YeEmail author
Article
  • 2 Downloads

Abstract

An experimental muon source (EMuS) will be built at the China Spallation Neutron Source (CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance (μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.

Keywords

EMuS μSR spectrometer 128-Channel Two-ring structure Four-ring structure Asymmetry 

References

  1. 1.
    P. Dalmas de Réotier, A. Yaouanc, Muon spin rotation and relaxation in magnetic materials. J. Phys.: Condens. Matter 9, 9113–9166 (1997).  https://doi.org/10.1088/0953-8984/9/43/002 CrossRefGoogle Scholar
  2. 2.
    J.E. Sonier, μSR brochure (2002). http://musr.net/muSRBrochure.pdf
  3. 3.
    P.J.C. King, R. Renzi, S.P. Cottrell et al., ISIS muons for materials and molecular science studies. Phys. Scr. 88, 068502 (2013).  https://doi.org/10.1088/0031-8949/88/06/068502 CrossRefGoogle Scholar
  4. 4.
    F. Foroughi, E. Morenzoni, T. Prokscha et al., Upgrading the PSI muon facility. Hyperfine Interact. 138, 483–488 (2001).  https://doi.org/10.1023/A:1020830830050 CrossRefGoogle Scholar
  5. 5.
    R. Xiao, E. Morenzoni, Z. Salman et al., A segmented conical electric lens for optimization of the beam spot of the low-energy muon facility at PSI: a Geant4 simulation analysis. Nucl. Sci. Tech. 28, 29 (2017).  https://doi.org/10.1007/s41365-017-0190-2 CrossRefGoogle Scholar
  6. 6.
    J.L. Beveridge, J. Doornbos, D.M. Garner, Muon facilities at TRIUMF. Hyperfine Interact. 32, 907–912 (1986).  https://doi.org/10.1007/BF02395002 CrossRefGoogle Scholar
  7. 7.
    A.D. Hillier, M. Aramini, P.J. Baker et al., Developing the Muon Facilities at ISIS, in Proceedings of the 14th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2017), Sapporo, Japan, 25–30 June 2017.  https://doi.org/10.7566/JPSCP.21.011055
  8. 8.
    Y. Miyake, K. Shimomura, N. Kawamura et al., Current status of the J-PARC muon facility, MUSE, Paper presented at the 13th International Conference on Muon Spin Rotation, Relaxation and Resonance, Grindelwald, Switzerland, 1–6 June 2014.  https://doi.org/10.1088/1742-6596/551/1/012061
  9. 9.
    A. Sato, Y. Kuno, H. Sakamoto et al., MuSIC, the world’s highest intensity DC muon beam using a pion capture system, in Conference proceedings of the 2nd International Particle Accelerator Conference (IPAC), San Sebastian, Spain, 4-9 September 2011. http://accelconf.web.cern.ch/AccelConf/IPAC2011/papers/MOPZ001.PDF
  10. 10.
    J.Y. Tang, S.N. Fu, J. Wei, Characteristics and potential applications of the proton beams at the CSNS. J. Korean Phys. Soc. 52, 710–713 (2008).  https://doi.org/10.3938/jkps.52.710 CrossRefGoogle Scholar
  11. 11.
    H.T. Jing, C. Meng, J.Y. Tang et al., Production target and muon collection studies for an experimental muon source at CSNS. Nucl. Instrum. Meth. A 684, 109–116 (2012).  https://doi.org/10.1016/j.nima.2012.05.045 CrossRefGoogle Scholar
  12. 12.
    R. Xiao, Y.F. Liu, X.J. Ni et al., Spin polarization and production rate studies of surface muons in a novel solenoid capture system based on CSNS. Nucl. Sci. Tech. 28, 109 (2017).  https://doi.org/10.1007/s41365-017-0261-4 CrossRefGoogle Scholar
  13. 13.
    E. Won, A proposal muon facility in RAON/Korea, in Proceedings of the International Symposium on Science Explored by Ultra Slow Muon (USM213), Matsue, Shimane, Japan, 9–12 August 2014.  https://doi.org/10.7566/JPSCP.2.010110
  14. 14.
    J.Y. Tang, X.J. Ni, X.Y. Ma et al., EMuS muon facility and its application in the study of magnetism. Quantum Beam Sci. 2, 23 (2018).  https://doi.org/10.3390/qubs2040023 CrossRefGoogle Scholar
  15. 15.
    K.M. Kojima, T. Murakami, T. Takahashi et al., New μSR spectrometer at J-PARC MUSE based on Kalliope detectors. Paper presented at the 13th International Conference on Muon Spin Rotation, Relaxation and Resonance, Grindelwald, Switzerland, 1–6 June 2014.  https://doi.org/10.1088/1742-6596/551/1/012063
  16. 16.
    K. Sedlak, R. Scheuermann, T. Shiroka et al., MuSRSim and MusrSimAna—Simulation Tools for μSR Instruments. Phys. Procedia 30, 61–64 (2012).  https://doi.org/10.1016/j.phpro.2012.04.040 CrossRefGoogle Scholar
  17. 17.
    S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 53, 250–303 (2003).  https://doi.org/10.1016/S0168-9002(03)01368-8 CrossRefGoogle Scholar
  18. 18.
    R. Brun, F. Rademakers, ROOT—an object-oriented data analysis framework. Nucl. Instrum. Meth. A 389, 81–86 (1997).  https://doi.org/10.1016/S0168-9002(97)00048-X CrossRefGoogle Scholar
  19. 19.
    S.R. Giblin, S.P. Cottrell, P.J.C. King et al., Optimising a muon spectrometer for measurements at the ISIS pulsed muon source. Nucl. Instrum. Meth. A 751, 70–78 (2014).  https://doi.org/10.1016/j.nima.2014.03.010 CrossRefGoogle Scholar
  20. 20.
    T.J. Roberts, D.M. Kaplan, G4beamline simulation program for matter-dominated beam lines. Paper presented at 2007 IEEE Particle Accelerator Conference (PAC), Albuquerque, NM, USA, 25–29 June 2007.  https://doi.org/10.1109/PAC.2007.4440461
  21. 21.
    Nagamine, K, Introductory Muon Science. (Cambridge University Press, Cambridge, 2003), pp. 11–12.  https://doi.org/10.1017/CBO9780511470776.002https://doi.org/10.1017/CBO9780511470776.002
  22. 22.
    Z. Pan, X. Ni, B. Ye, Conceptual design of MuSR spectrometer for EMuS using Monte Carlo simulation, in Conference proceedings of 3rd China-Japan Joint Workshop on Positron Science (JWPS2017), Hefei, China, 8–10 June 2017.  https://doi.org/10.7567/JJAPCP.7.011303
  23. 23.
    R.J. da Silva Afonso, P.J. Baker, J.S. Lord, et al, Monte Carlo simulations of the MuSR spectrometer at ISIS: current instrument and future designs. (STFC ePubs website, 2001) https://nmi3.eu/index.php?get_file=monte_carlo_simulations_of_the_musr_spectrometer_at_isis.pdf. Accessed 10 April 2019
  24. 24.
    Stephen Cottrell, Chinese Detector Tests, STFC ISIS Neutron and Muon Source, 2018.  https://doi.org/10.5286/ISIS.E.RB1830641

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zi-Wen Pan
    • 1
  • Jing-Yu Dong
    • 1
  • Xiao-Jie Ni
    • 1
  • Lu-Ping Zhou
    • 2
    • 3
  • Jing-Yu Tang
    • 2
  • Daniel E. Pooley
    • 4
  • Stephen P. Cottrell
    • 4
  • Bang-Jiao Ye
    • 1
    Email author
  1. 1.State Key Laboratory of Particle Detection and ElectronicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.ISIS FacilitySTFC Rutherford Appleton Laboratory, ChiltonOxfordshireUK

Personalised recommendations