Advertisement

Effect of Na and Cl ions on water evaporation on graphene oxide

  • Xi Nan
  • Yu-Wei Guo
  • Rong-Zheng WanEmail author
Article

Abstract

Using molecular dynamics simulations, we investigate the influence of Na and Cl ions on the evaporation of nanoscale water on graphene oxide surfaces. As the concentration of NaCl increases from 0 to 1.5 M, the evaporation rate shows a higher decrease on patterned graphene oxide than that on homogeneous graphene oxide. The analysis shows an obvious decrease in the evaporation rate from unoxidized regions, which can be attributed to the increased amount of Na+ ions near the contact lines. The proximity of Na+ significantly extends the H-bond lifetime of the outermost water molecules, which reduces the number of water molecules diffusing from the oxidized to unoxidized regions. Moreover, the effect of the ions on water evaporation is less significant when the oxidation degree varies in a certain range. Our findings advance the understanding of the evaporation process in the presence of ions and highlight the potential application of graphene oxide in achieving controllable evaporation of liquids.

Keywords

Evaporation Ions Graphene oxide Molecular dynamics simulation 

Notes

Acknowledgements

We thank Haiping Fang, Yi Gao, Beien Zhu, Xiaoling Lei, Jige Chen, Shanshan Liang, Xing Liu, Jingyu Qi, Gang Fang, Zhi Zhu, Yizhou Yang, Chonghai Qi, Yangchao Lu, Yangjie Wang, Xiaomeng Yu, Zhongjie Zhu, Xiaoyan Li, Huishu Ma, Jie Jiang, and Liuhua Mu for their constructive suggestions and help.

Supplementary material

41365_2019_646_MOESM1_ESM.docx (96 kb)
Supplementary material 1 (DOCX 97 kb)

References

  1. 1.
    G. Zarei, M. Homaee, A.M. Liaghat et al., A model for soil surface evaporation based on Campbell’s retention curve. J. Hydrol. 380, 356–361 (2010).  https://doi.org/10.1016/j.jhydrol.2009.11.010 CrossRefGoogle Scholar
  2. 2.
    F.E. Rockwell, N.M. Holbrook, A.D. Stroock, The competition between liquid and vapor transport in transpiring leaves. Plant Physiol. 164, 1741–1758 (2014).  https://doi.org/10.1104/pp.114.236323 CrossRefGoogle Scholar
  3. 3.
    W. Tao, K.S. Lackner, A.B. Wright, Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. Phys. Chem. Chem. Phys. 15, 504–514 (2012).  https://doi.org/10.1039/c2cp43124f CrossRefGoogle Scholar
  4. 4.
    A.S. Joshi, Y. Sun, Numerical simulation of colloidal drop deposition dynamics on patterned substrates for printable electronics fabrication. J. Disp. Technol. 6, 579–585 (2010).  https://doi.org/10.1109/jdt.2010.2040707 CrossRefGoogle Scholar
  5. 5.
    W.L. Cheng, W.W. Zhang, H. Chen et al., Spray cooling and flash evaporation cooling: the current development and application. Renew. Sust. Energ. Rev. 55, 614–628 (2016).  https://doi.org/10.1016/j.rser.2015.11.014 CrossRefGoogle Scholar
  6. 6.
    G. Duursma, K. Sefiane, A. Kennedy, Experimental studies of nanofluid droplets in spray cooling. Heat Transf. Eng. 30, 1108–1120 (2009).  https://doi.org/10.1080/01457630902922467 CrossRefGoogle Scholar
  7. 7.
    J.Y. Xiao, Z. Li, X.Z. Ye et al., Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale 6, 996–1004 (2013).  https://doi.org/10.1039/c3nr05343a CrossRefGoogle Scholar
  8. 8.
    P. Liu, X. Huang, R. Zhou et al., Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437, 159–162 (2005).  https://doi.org/10.1038/nature03926 CrossRefGoogle Scholar
  9. 9.
    L.J. Zhang, J. Wang, Y. Luo et al., A novel water layer structure inside nanobubbles at room temperature. Nucl. Sci. Tech. 25, 81–83 (2014).  https://doi.org/10.13538/j.1001-8042/nst.25.060503 CrossRefGoogle Scholar
  10. 10.
    B. Sobac, D. Brutin, Thermal effects of the substrate on water droplet evaporation. Phys. Rev. E Stat. Nonlinear Soft. Matter Phys. 86, 021602 (2012).  https://doi.org/10.1103/physreve.86.021602 CrossRefGoogle Scholar
  11. 11.
    W. Mathers, Evaporation from the ocular surface. Exp. Eye Res. 78, 389–394 (2004).  https://doi.org/10.1016/s0014-4835(03)00199-4 CrossRefGoogle Scholar
  12. 12.
    N. Musolino, B.L. Trout, Insight into the molecular mechanism of water evaporation via the finite temperature string method. J. Chem. Phys. 138, 134707 (2013).  https://doi.org/10.1063/1.4798458 CrossRefGoogle Scholar
  13. 13.
    C. Maqua, G. Castanet, F. Lemoine, Bicomponent droplets evaporation: temperature measurements and modelling. Fuel 87, 2932–2942 (2008).  https://doi.org/10.1016/j.fuel.2008.04.021 CrossRefGoogle Scholar
  14. 14.
    J.P. Mcculley, J.D. Aronowicz, E. Uchiyama et al., Correlations in a change in aqueous tear evaporation with a change in relative humidity and the impact. Am. J. Ophthalmol. 141, 758–760 (2006).  https://doi.org/10.1016/j.ajo.2005.10.057 CrossRefGoogle Scholar
  15. 15.
    M.D. Webster, J.R. King, Temperature and humidity dynamics of cutaneous and respiratory evaporation in pigeons, Columba livia. J. Comp. Physiol. B. 157, 253–260 (1987).  https://doi.org/10.1007/bf00692370 CrossRefGoogle Scholar
  16. 16.
    H.S. Dong, S.H. Lee, J.Y. Jung et al., Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectron. Eng. 86, 1350–1353 (2009).  https://doi.org/10.1016/j.mee.2009.01.026 CrossRefGoogle Scholar
  17. 17.
    M. Lee, D. Lee, N. Jung et al., Evaporation of water droplets from hydrophobic and hydrophilic nanoporous microcantilevers. Appl. Phys. Lett. 98, 5404 (2011).  https://doi.org/10.1063/1.3541958 CrossRefGoogle Scholar
  18. 18.
    M. Elbaum, S.G. Lipson, How does a thin wetted film dry up? Phys. Rev. Lett. 72, 3562 (1994).  https://doi.org/10.1103/physrevlett.72.3562 CrossRefGoogle Scholar
  19. 19.
    R. Wan, G. Shi, Accelerated evaporation of water on graphene oxide. Phys. Chem. Chem. Phys. 19, 8843–8847 (2017).  https://doi.org/10.1039/c7cp00553a CrossRefGoogle Scholar
  20. 20.
    M. He, D. Liao, H. Qiu, Multicomponent droplet evaporation on chemical micro-patterned surfaces. Sci. Rep. 7, 41897 (2017).  https://doi.org/10.1038/srep41897 CrossRefGoogle Scholar
  21. 21.
    Y. Guo, R. Wan, Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures. Phys. Chem. Chem. Phys. 20, 12272–12277 (2018).  https://doi.org/10.1039/c8cp00037a CrossRefGoogle Scholar
  22. 22.
    G. Shi, L. Chen, Y. Yang et al., Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions. Nat. Chem. 10, 776 (2018).  https://doi.org/10.1038/s41557-018-0061-4 CrossRefGoogle Scholar
  23. 23.
    X. Wang, G. Shi, S. Liang et al., Unexpectedly high salt accumulation inside carbon nanotubes soaked in very dilute salt solutions. Phys. Rev. Lett. 121, 226102 (2018).  https://doi.org/10.1103/physrevlett.121.226102 CrossRefGoogle Scholar
  24. 24.
    G. Shi, Y. Dang, T. Pan et al., Unexpectedly enhanced solubility of aromatic amino acids and peptides in an aqueous solution of divalent transition-metal cations. Phys. Rev. Lett. 117, 238102 (2016).  https://doi.org/10.1103/physrevlett.117.238102 CrossRefGoogle Scholar
  25. 25.
    G. Shi, Y. Ding, H. Fang, Unexpectedly strong anion-π interactions on the graphene flakes. J. Comput. Chem. 33, 1328–1337 (2012).  https://doi.org/10.1002/jcc.22964 CrossRefGoogle Scholar
  26. 26.
    J. Liu, G. Shi, G. Pan, Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 115, 164502 (2015).  https://doi.org/10.1103/physrevlett.115.164502 CrossRefGoogle Scholar
  27. 27.
    X. Nie, B. Zhou, C. Wang, Wetting behaviors of methanol, ethanol, and propanol on hydroxylated SiO2 substrate. Nucl. Sci. Tech. 29, 18 (2018).  https://doi.org/10.1007/s41365-018-0364-6 CrossRefGoogle Scholar
  28. 28.
    A.S. Ansari, S.N. Pandis, Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos. Environ. 33, 745–757 (1999).  https://doi.org/10.1016/s1352-2310(98)00221-0 CrossRefGoogle Scholar
  29. 29.
    M. Colonna, V. Baran, S. Burrello et al., Exotic break-up modes in heavy ion reactions up to Fermi energies. Nucl. Sci. Tech. 26, 124–130 (2015).  https://doi.org/10.13538/j.1001-8042/nst.26.s20509 CrossRefGoogle Scholar
  30. 30.
    L. Francalanza, U. Abbondanno, F. Amorini et al., Competition between fusion-evaporation and multifragmentation in central collisions in Ni58 + Ca48 at 25A MeV. Nucl. Sci. Tech. 24, 82–88 (2013).  https://doi.org/10.1088/1742-6596/420/1/012084 CrossRefGoogle Scholar
  31. 31.
    D. Li, G. Shi, F. Hong et al., Potentials of classical force fields for interactions between Na+ and carbon nanotubes. Chin. Phys. B 27, 098801 (2018).  https://doi.org/10.1088/1674-1056/27/9/098801 CrossRefGoogle Scholar
  32. 32.
    G. Fang, J. Chen, Hindered gas transport through aqueous salt solution interface. J. Phys. Chem. C 122, 20774–20780 (2018).  https://doi.org/10.1021/acs.jpcc.8b05495 CrossRefGoogle Scholar
  33. 33.
    W.S. Drisdell, R.J. Saykally, R.C. Cohen, On the evaporation of ammonium sulfate solution. Proc. Natl. Acad. Sci. USA 106, 18897–18901 (2009).  https://doi.org/10.1073/pnas.0907988106 CrossRefGoogle Scholar
  34. 34.
    T. Furuta, A. Nakajima, M. Sakai et al., Evaporation and sliding of water droplets on fluoroalkylsilane coatings with nanoscale roughness. Langmuir 25, 5417–5420 (2009).  https://doi.org/10.1021/la8040665 CrossRefGoogle Scholar
  35. 35.
    K.C. Duffey, S. Orion, N.L. Wong et al., Evaporation kinetics of aqueous acetic acid droplets: effects of soluble organic aerosol components on the mechanism of water evaporation. Phys. Chem. Chem. Phys. 15, 11634–11639 (2013).  https://doi.org/10.1039/c3cp51148k CrossRefGoogle Scholar
  36. 36.
    S. Sjogren, M. Gysel, E. Weingartner et al., Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. J. Aerosol Sci. 38, 157–171 (2007).  https://doi.org/10.1016/j.jaerosci.2006.11.005 CrossRefGoogle Scholar
  37. 37.
    P.Y. Chuang, R.J. Charlson, J.H. Seinfeld, Kinetic limitations on droplet formation in clouds. Nature 390, 594–596 (1997).  https://doi.org/10.1038/37576 CrossRefGoogle Scholar
  38. 38.
    W.S. Drisdell, R.J. Saykally, R.C. Cohen, Effect of surface active ions on the rate of water evaporation. J. Phys. Chem. C 114, 11880–11885 (2010).  https://doi.org/10.1021/jp101726x CrossRefGoogle Scholar
  39. 39.
    A.M. Rizzuto, E.S. Cheng, K.J. Lam et al., Surprising effects of hydrochloric acid on the water evaporation coefficient observed by raman thermometry. J. Phys. Chem. C 121, 4420–4425 (2017).  https://doi.org/10.1021/acs.jpcc.6b12851 CrossRefGoogle Scholar
  40. 40.
    H. He, J. Klinowski, M. Forster et al., A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).  https://doi.org/10.1016/s0009-2614(98)00144-4 CrossRefGoogle Scholar
  41. 41.
    Y. Tu, M. Lv, P. Xiu et al., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8, 594 (2013).  https://doi.org/10.1038/nnano.2013.125 CrossRefGoogle Scholar
  42. 42.
    D. Chen, B. Feng, H. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012).  https://doi.org/10.1021/cr300115g CrossRefGoogle Scholar
  43. 43.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura et al., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).  https://doi.org/10.1063/1.445869 CrossRefGoogle Scholar
  44. 44.
    V.V. Zhakhovskii, S.I. Anisimov, Molecular-dynamics simulation of evaporation of a liquid. J. Exp. Theor. Phys. 84, 734–745 (1997).  https://doi.org/10.1134/1.558192 CrossRefGoogle Scholar
  45. 45.
    J.C. Phillips, R. Braun, W. Wang et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).  https://doi.org/10.1002/jcc.20289 CrossRefGoogle Scholar
  46. 46.
    J.A.D. MacKerell, D. Bashford, M. Bellott et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).  https://doi.org/10.1021/jp973084f CrossRefGoogle Scholar
  47. 47.
    T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  48. 48.
    R.B. Jackson, S.R. Carpenter, C.N. Dahm et al., Water in a changing world. Ecol. Appl. 11, 1027–1045 (2001).  https://doi.org/10.2307/3061010 CrossRefGoogle Scholar
  49. 49.
    Z. Zhu, H. Guo, X. Jiang et al., Reversible hydrophobicity-hydrophilicity transition modulated by surface curvature. J. Phys. Chem. Lett. 9, 2346–2352 (2018).  https://doi.org/10.1021/acs.jpclett.8b00749 CrossRefGoogle Scholar
  50. 50.
    R. Wan, C. Wang, X. Lei et al., Enhancement of water evaporation on solid surfaces with nanoscale hydrophobic-hydrophilic patterns. Phys. Rev. Lett. 115, 195901 (2015).  https://doi.org/10.1103/physrevlett.115.195901 CrossRefGoogle Scholar
  51. 51.
    L. Chen, G. Shi, J. Shen et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380 (2017).  https://doi.org/10.1038/nature24044 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations