Advertisement

EQR SiPM with P-on-N diode configuration

  • Jian-Quan Jia
  • Jia-Li Jiang
  • Kun LiangEmail author
  • Ru Yang
  • De-Jun Han
Article

Abstract

The silicon photomultiplier (SiPM) with epitaxial quenching resistor (EQR) is an emerging and developing technology that has recently attracted the interest from the research community. It has characteristics of a continuous low-resistance cap layer and integrated quenching resisters in epitaxial silicon layer, which makes it possible to increase microcell density or reduce microcell size, thus obtaining large dynamic range and high photon detection efficiency (PDE) simultaneously. Results published show that the EQR SiPM with N-on-P diode configuration had relatively low PDE at peak wavelength of 480 nm as 16%. This paper reported the EQR SiPM with P-on-N diode configuration having active area of 3 × 3 mm2 and cell density of 10,000/mm2 (total 90,000 pixels). It was characterized with gain of 2E5, dark count rate of 7 MHz, crosstalk of 7%, dynamic range of 85,000 pixels, overall recovery time of 32 ns at room temperature and over-voltage of 3.5 V. The improved PDE at peak wavelength of 420 nm was 30%.

Keywords

Silicon photomultiplier Epitaxial quenching P-on-N diode Characteristics 

Notes

Acknowledgments

The authors would like to thank Baicheng Li, for helping PDE measurement, Hesheng Tan and Rongdan Liu for device simulation.

References

  1. 1.
    G. Romeo, G. Bonanno, S. Garozzo et al., Characterization of a 6 × 6-mm2 75-μm cell MPPC suitable for the Cherenkov Telescope Array project. Nucl. Instrum. Methods A 826, 31–38 (2016).  https://doi.org/10.1016/j.nima.2016.04.060 CrossRefGoogle Scholar
  2. 2.
    S. Dey, T.K. Lewellen, R.S. Miyaoka et al., Highly-integrated CMOS interface circuits for SiPM-based PET imaging systems. IEEE Nucl. Sci. Conf. Rec. 123, 3556–3559 (2015).  https://doi.org/10.1109/NSSMIC.2012.6551814 CrossRefGoogle Scholar
  3. 3.
    J.A. Aguilar, W. Bilnik, J. Borkowski et al., The front-end electronics and slow control of large area SiPM for the SST-1 M camera developed for the CTA experiment. Nucl. Instrum. Methods A 830, 219–232 (2016).  https://doi.org/10.1016/j.nima.2016.05.086 CrossRefGoogle Scholar
  4. 4.
    S. Petrovics, L. Andricek, I. Diehl et al., A novel silicon photomultiplier with bulk integrated quench resistors: utilization in optical detection and tracking applications for particle physics. Nucl. Instrum. Methods A 845, 150–153 (2017).  https://doi.org/10.1016/j.nima.2016.06.098 CrossRefGoogle Scholar
  5. 5.
    G.Q. Zhang, X.B. Hu, C.Z. Hu et al., Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon. Nucl. Instrum. Methods A 621, 116–120 (2010).  https://doi.org/10.1016/j.nima.2010.04.040 CrossRefGoogle Scholar
  6. 6.
    W. Yue, C. Zongde, L. Chenhui et al., Performance of ultra-small silicon photomultiplier array with active area of 0.12 mm × 0.12mm. Nucl. Instrum. Methods A 787, 38–41 (2015).  https://doi.org/10.1016/j.nima.2014.10.068 CrossRefGoogle Scholar
  7. 7.
    B. Li, Y. Wang, D. Xi et al., Feasibility study on silicon photomultiplier with epitaxial quenching resistors as the readout for PET detectors. IEEE Trans. Nucl. Sci. 63, 17–21 (2016).  https://doi.org/10.1109/TNS.2015.2501409 CrossRefGoogle Scholar
  8. 8.
    J. Jia, J. Jiang, B.C. Li et al., Research on high micro element density silicon photomultiplier based on epitaxial quenching resistance. Aata Photon. Sin. 46(4), 0404001 (2017).  https://doi.org/10.3788/gzxb20174604.0404001 (in Chinese)CrossRefGoogle Scholar
  9. 9.
    D. Renker, E. Lorenz, Advances in solid state photon detectors. J. Instrum. 4, P4004 (2009).  https://doi.org/10.1088/1748-0221/4/04/P04004 CrossRefGoogle Scholar
  10. 10.
    M. Mazzillo, S. Abbisso, G. Condorelli, et al., Enhanced blue-light sensitivity P on N silicon photomultipliers, in Nuclear Science Symposium and Medical Imaging Conference, N12-1 (2011), pp. 538–543.  https://doi.org/10.1109/nssmic.2011.6154108
  11. 11.
    C. Piemonte, F. Acerbi, A. Ferri et al., Performance of NUV-HD silicon photomultiplier technology. IEEE Trans. Electron Dev. 63, 1111–1116 (2016).  https://doi.org/10.1109/TED.2016.2516641 CrossRefGoogle Scholar
  12. 12.
    G. Bonanno, P. Finocchiaro, A. Pappalardo et al., Precision measurements of Photon Detection Efficiency for SiPM detectors. Nucl. Instrum. Methods A 610, 93–97 (2009).  https://doi.org/10.1016/j.nima.2009.05.117 CrossRefGoogle Scholar
  13. 13.
  14. 14.
    C.R. Crowell, S.M. Sze, Temperature dependence of avalanche multiplication in semiconductors. Appl. Phys. Lett. 9, 242 (1966).  https://doi.org/10.1063/1.1754731 CrossRefGoogle Scholar
  15. 15.
    M. Mazzillo, A. Ronzhin, S. Los, et al., High fill factor P-on-N silicon photomultipliers for blue light detection, in Nuclear Science Symposium and Medical Imaging Conference (2012), pp. 391–398.  https://doi.org/10.1109/nssmic.2012.6551131
  16. 16.
    L. Gruber, S.E. Brunner, J. Marton et al., Over saturation behavior of SiPMs at high photon exposure. Nucl. Instrum. Methods 737, 11–18 (2014).  https://doi.org/10.1016/j.nima.2013.11.013 CrossRefGoogle Scholar
  17. 17.
    I. Britvitch, D. Renker, Measurements of the recovery time of Geiger-mode avalanche photodiodes. Nucl. Instrum. Methods A 567, 260–263 (2006).  https://doi.org/10.1016/j.nima.2006.05.109 CrossRefGoogle Scholar
  18. 18.
    J. Jiang, J. Jia, T. Zhao et al., Recovery time of silicon photomultiplier with epitaxial quenching resistors. Instruments 1, 5 (2017).  https://doi.org/10.3390/instruments1010005 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jian-Quan Jia
    • 1
  • Jia-Li Jiang
    • 1
  • Kun Liang
    • 1
    Email author
  • Ru Yang
    • 1
  • De-Jun Han
    • 1
  1. 1.Novel Device LaboratoryBeijing Normal UniversityBeijingChina

Personalised recommendations