Advertisement

Effect of concentration and adsorption time on the formation of a large-scale origami pattern

  • Wen-Jing Liu
  • Ping Zhang
  • Tong Sun
  • Lin Li
  • Yu-Hui Wei
  • Kai-Zhe Wang
  • Lin Liu
  • Bin LiEmail author
Article
  • 31 Downloads

Abstract

The arrangement of DNA-based nanostructures into the desired large-scale periodic pattern with the highest possible accuracy and control is essential for the DNA application in functional biomaterials; however, formation of a DNA nanostructure pattern without utilizing the molecular interactions in nanotechnology field remains difficult. In this article, we use the optimal concentration and adsorption time of origami to induce DNA origami in the form of a large-scale 2D pattern on mica without changing the origami itself. DNA origami structures can form a pattern by close packing of symmetric and electrostatic interactions between ions, which was confirmed by the atomic force microscopy images. Furthermore, we identified favorable conditions for the concentration of DNA origami and optimal adsorption time, which can enable pattern formation with DNA origami. This work provides an insight to understand the adsorption of DNA on mica and guides researches on regular DNA nanostructure pattern, which can serve as templates for pattern formation of proteins or other biomolecules.

Keywords

DNA Origami Pattern Atomic force microscopy Close packing 

References

  1. 1.
    Y.J. Min, M. Akbulut, K. Kristiansen et al., The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).  https://doi.org/10.1038/nmat2206 CrossRefGoogle Scholar
  2. 2.
    N.C. Seeman, Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).  https://doi.org/10.1016/0022-5193(82)90002-9 CrossRefGoogle Scholar
  3. 3.
    J.D. Watson, F.H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).  https://doi.org/10.1038/175834a0 CrossRefGoogle Scholar
  4. 4.
    W. Jd, C. Fh, Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953).  https://doi.org/10.1001/jama.1993.03500150079031 CrossRefGoogle Scholar
  5. 5.
    A. Yaniv, B.I. Eldad, L. Daniel et al., Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014).  https://doi.org/10.1038/nnano.2014.58 CrossRefGoogle Scholar
  6. 6.
    A.C. Pearson, J. Liu, E. Pound et al., DNA origami metallized site specifically to form electrically conductive nanowires. J. Phy. Chem. B 116, 10551 (2012).  https://doi.org/10.1021/jp302316p CrossRefGoogle Scholar
  7. 7.
    P.W. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).  https://doi.org/10.1038/nature04586 CrossRefGoogle Scholar
  8. 8.
    N. Wu, X. Zhou, D.M. Czajkowsky et al., In situ monitoring of single molecule binding reactions with time-lapse atomic force microscopy on functionalized DNA origami. Nanoscale 3, 2481–2484 (2011).  https://doi.org/10.1039/c1nr10181a CrossRefGoogle Scholar
  9. 9.
    Y.U. Guokai, Y. Wei, L. Liu et al., Compression elastic property of DNA origami measured by atomic force microscopy. Nucl. Tech. (2017).  https://doi.org/10.11889/j.0253-3219.2017.hjs.40.040501. (in Chinese) CrossRefGoogle Scholar
  10. 10.
    J. Chao, P. Zhang, Q. Wang et al., Single-molecule imaging of DNA polymerase i (klenow fragment) activity by atomic force microscopy. Nanoscale 8, 5842–5846 (2016).  https://doi.org/10.1039/c5nr06544e CrossRefGoogle Scholar
  11. 11.
    E. Winfree, F. Liu, L.A. Wenzler et al., Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).  https://doi.org/10.1038/28998 CrossRefGoogle Scholar
  12. 12.
    P.W. Rothemund, N. Papadakis, E. Winfree, Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).  https://doi.org/10.1371/journal.pbio.0020424 CrossRefGoogle Scholar
  13. 13.
    K. Fujibayashi, R. Hariadi, S.H. Park et al., Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8, 1791 (2008).  https://doi.org/10.1021/nl0722830 CrossRefGoogle Scholar
  14. 14.
    A. Aghebat Rafat, T. Pirzer, M.B. Scheible et al., Surface-assisted large-scale ordering of DNA origami tiles. Angew. Chem. Int. Ed. 53, 7665–7668 (2014).  https://doi.org/10.1002/anie.201403965 CrossRefGoogle Scholar
  15. 15.
    S. Woo, P.W. Rothemund, Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. Nat. Commun. 5, 4889 (2014).  https://doi.org/10.1038/ncomms5889 CrossRefGoogle Scholar
  16. 16.
    S. Ramakrishnan, S. Subramaniam, A.F. Stewart et al., Regular nanoscale protein patterns via directed adsorption through self-assembled DNA origami masks. ACS Appl. Mater. Interfaces 8, 31239–31247 (2016).  https://doi.org/10.1021/acsami.6b10535 CrossRefGoogle Scholar
  17. 17.
    S. Kocabey, S. Kempter, J. List et al., Membrane-assisted growth of DNA origami nanostructure arrays. ACS Nano 9, 3530–3539 (2015).  https://doi.org/10.1021/acsnano.5b00161 CrossRefGoogle Scholar
  18. 18.
    Y. Suzuki, M. Endo, H. Sugiyama, Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat. Commun. 6, 8052 (2015).  https://doi.org/10.1038/ncomms9052 CrossRefGoogle Scholar
  19. 19.
    E. Penzo, R. Wang, M. Palma et al., Selective placement of DNA origami on substrates patterned by nanoimprint lithography. J. Vac. Sci. Technol. B 29, 06F205 (2011).  https://doi.org/10.1116/1.3646900 CrossRefGoogle Scholar
  20. 20.
    R.J. Kershner, L.D. Bozano, C.M. Micheel et al., Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4(557), 20 (2009).  https://doi.org/10.1038/nnano.2009.220 CrossRefGoogle Scholar
  21. 21.
    A. Gopinath, P.W. Rothemund, Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. ACS Nano 8, 12030–12040 (2014).  https://doi.org/10.1021/nn506014s CrossRefGoogle Scholar
  22. 22.
    Y. Yuan, Y.-J. Wang, J. Hu et al., Mechanical-force-promoted peptide assembly: a general method. Nucl. Sci. Tech. 29, 131 (2018).  https://doi.org/10.1007/s41365-018-0470-5 CrossRefGoogle Scholar
  23. 23.
    H.-Z. Lei, T. Tian, Q. Du et al., Sequence-dependent interactions between model peptides and lipid bilayers. Nucl. Sci. Tech. 28, 124 (2017).  https://doi.org/10.1007/s41365-017-0280-1 CrossRefGoogle Scholar
  24. 24.
    A. Aghebat Rafat, T. Pirzer, M.B. Scheible et al., Surface-assisted large-scale ordering of DNA origami tiles. Angew. Chem. Int. Ed. 53, 7665–7668 (2014).  https://doi.org/10.1002/anie.201403965 CrossRefGoogle Scholar
  25. 25.
    Y. Suzuki, H. Sugiyama, M. Endo, Complexing DNA origami frameworks through sequential self-assembly based on directed docking. Angew. Chem. 130, 7179–7183 (2018).  https://doi.org/10.1002/ange.201801983 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Wen-Jing Liu
    • 1
    • 2
  • Ping Zhang
    • 1
    • 2
  • Tong Sun
    • 1
    • 2
  • Lin Li
    • 1
    • 4
  • Yu-Hui Wei
    • 1
    • 3
  • Kai-Zhe Wang
    • 1
    • 2
  • Lin Liu
    • 1
    • 2
  • Bin Li
    • 1
    • 3
    Email author
  1. 1.Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  4. 4.School of ScienceNingbo UniversityNingboChina

Personalised recommendations