Effects of energy deposition on mechanical properties of sodium borosilicate glass irradiated by three heavy ions: P, Kr, and Xe

  • Xin Du
  • Tian-Tian Wang
  • Bing-Huang Duan
  • Xiao-Yang Zhang
  • Feng-Fei Liu
  • Chang-Lin Lan
  • Guang-Fu Wang
  • Liang Chen
  • Hai-Bo PengEmail author
  • Tie-Shan WangEmail author


Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification; therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy deposition and nuclear energy deposition induced by the impact of heavy ions on the hardness and Young’s modulus of sodium borosilicate glass were investigated. The work concentrates on sodium borosilicate glasses, henceforth termed NBS1 (60.0% SiO2, 15.0% B2O3, and 25.0% Na2O in mol%). The NBS1 glasses were irradiated by P, Kr, and Xe ions with 0.3 MeV, 4 MeV, and 5 MeV, respectively. The hardness and Young’s modulus of ion-irradiated NBS1 glasses were measured by nanoindentation tests. The relationships between the evolution of the hardness, the change in the Young’s modulus of the NBS1 glasses, and the energy deposition were investigated. With the increase in the nuclear energy deposition, both the hardness and Young’s modulus of NBS1 glasses dropped exponentially and then saturated. Regardless of the ion species, the nuclear energy depositions required for the saturation of hardness and Young’s modulus were apparent at approximately 1.2 × 1020 keV/cm3 and 1.8 × 1020 keV/cm3, respectively. The dose dependency of the hardness and Young’s modulus of NBS1 glasses was consistent with previous studies by Peuget et al. Moreover, the electronic energy loss is less than 4 keV/nm, and the electronic energy deposition is less than 3.0 × 1022 keV/cm3 in this work. Therefore, the evolution of hardness and Young’s modulus could have been primarily induced by nuclear energy deposition.


Borosilicate glass Hardness Young’s modulus Irradiation Nuclear energy deposition 



The authors are grateful to the staff of the 320-kV ECR HCIs Platform at IMP (Lanzhou), and the staff of the Public Center for Characterization and Test at Suzhou Institute of Nano-tech and Nano-bionics for their technical support.


  1. 1.
    D. Manara, A. Grandjean, D.R. Neuville, Structure of borosilicate glasses and melts: a revision of the Yun, Bray and Dell model. J. Non-Cryst. Solids 355, 2528–2531 (2009). CrossRefGoogle Scholar
  2. 2.
    T.S. Wang, X. Du, W. Yuan et al., Morphological study of borosilicate glass surface irradiated by heavy ions. Surf. Coat. Technol. 306, 245–250 (2016). CrossRefGoogle Scholar
  3. 3.
    G.F. Zhang, T.S. Wang, K.J. Yang et al., Raman spectra and nano-indentation of Ar-irradiated borosilicate glass. Nucl. Instrum. Methods B 316, 218–221 (2013). CrossRefGoogle Scholar
  4. 4.
    W.L. Gao, B.X. Xia, Q.X. Xu et al., Immobilization of radioactive fluoride waste in aluminophosphate glass:a molecular dynamics simulation. Nucl. Sci. Tech. 29, 92 (2018). CrossRefGoogle Scholar
  5. 5.
    Y.P. Sun, X.B. Xia, Y.B. Qiao et al., Properties of phosphate glass waste forms containing fluorides from a molten salt reactor. Nucl. Sci. Tech. 27, 63 (2016). CrossRefGoogle Scholar
  6. 6.
    G.K. Lockwood, S.H. Garofalini, Effect of moisture on the self-healing of vitreous silica under irradiation. J. Nucl. Mater. 400, 73–78 (2010). CrossRefGoogle Scholar
  7. 7.
    S. Peuget, N.J. Cachia, C. Jégou et al., Irradiation stability of R7T7-type borosilicate glass. J. Nucl. Mater. 354, 1–13 (2006). CrossRefGoogle Scholar
  8. 8.
    R.A.B. Devine, Macroscopic and microscopic effects of radiation in amorphous SiO2. Nucl. Instrum. Methods B 91, 378–390 (1994). CrossRefGoogle Scholar
  9. 9.
    B. Boizot, S. Agnello, B. Reynard et al., Raman spectroscopy study of beta-irradiated silica glass. J. Non-Cryst. Solids 325, 22–28 (2003). CrossRefGoogle Scholar
  10. 10.
    S. Peuget, V. Broudic, C. Jegouu et al., Effect of alpha radiation on the leaching behaviour of nuclear glass. J. Nucl. Mater. 362, 474–479 (2007). CrossRefGoogle Scholar
  11. 11.
    W.J. Weber, H.J. Matzke, Indentation fracture toughness in nuclear waste glasses and ceramics: environmental and radiation effects. Euro. Appl. Res. Rep. 7, 207 (1987)Google Scholar
  12. 12.
    G. Karakurt, A. Abdelouas, J.P. Guin et al., Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass. J. Nucl. Mater. 2016(475), 243–254 (2016). CrossRefGoogle Scholar
  13. 13.
    S. Peuget, J.M. Delaye, C. Jégou, Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J. Nucl. Mater. 444, 76–91 (2014). CrossRefGoogle Scholar
  14. 14.
    K.J. Yang, T.S. Wang, G.F. Zhang et al., Study of irradiation damage in borosilicate glass induced by He ions and electrons. Nucl. Instrum. Methods B 307, 541–544 (2013). CrossRefGoogle Scholar
  15. 15.
    S. Peuget, P.Y. Noel, J.L. Loubet et al., Effects of deposited nuclear and electronic energy on the hardness of R7T7-type containment glass. Nucl. Instrum. Methods B 246, 379–386 (2006). CrossRefGoogle Scholar
  16. 16.
    A.H. Mir, I. Monnet, M. Toulemonde et al., Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: stopping power dependence of the mechanical properties. J. Nucl. Mater. 469, 244–250 (2016). CrossRefGoogle Scholar
  17. 17.
    Y. Yang, J.Y. Yuan, C.Y. Feng et al., Transmission efficiency improvement of the injector line of SFC by particle beam decorrelation. Nucl. Sci. Tech. 26, 060203 (2015). CrossRefGoogle Scholar
  18. 18.
    J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter. Nucl. Instrum. Methods B. F, 93–129 (1985). CrossRefGoogle Scholar
  19. 19.
    D. Saad, H. Benkharfia, M. Izerrouken et al., Displacement damage cross section and mechanical properties calculation of an Es-Salam research reactor aluminum vessel. Nucl. Sci. Tech. 28, 162 (2017). CrossRefGoogle Scholar
  20. 20.
    W. Qi, Z.T. He, B.L. Zang et al., Behaviors of fine(IG-110) and ultra-fine(HPG-510) grain graphite irradiated by 7 MeV Xe26+ ions. Nucl. Sci. Tech. 28, 144 (2017). CrossRefGoogle Scholar
  21. 21.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). CrossRefGoogle Scholar
  22. 22.
    W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004). CrossRefGoogle Scholar
  23. 23.
    H.B. Peng, M.L. Sun, X. Du et al., Variation of hardness and modulus of borosilicate glass irradiated with Kr ions. Nucl. Instrum. Methods B 406, 561–565 (2017). CrossRefGoogle Scholar
  24. 24.
    H.B. Peng, F.F. Liu, M. Guan, Variation of hardness and modulus of sodium borosilicate glass irradiated with different ions. Nucl. Instrum. Methods B 435, 214–218 (2018). CrossRefGoogle Scholar
  25. 25.
    J.D. Bonfils, S. Peuget, G. Panczer et al., Effect of chemical composition on borosilicate glass behavior under irradiation. J. Non-Cryst. Solids 356, 388–393 (2010). CrossRefGoogle Scholar
  26. 26.
    L. Chen, W. Yuan, S. Nan et al., Study of modifications in the mechanical properties of sodium aluminoborosilicate glass induced by heavy ions and electrons. Nucl. Instrum. Methods B 370, 42–48 (2016). CrossRefGoogle Scholar
  27. 27.
    J.F. Denatale, D.G. Howitt, G.W. Aranold, Radiation damage in silicate glass. Radiat. Eff. 98, 63–70 (1986). CrossRefGoogle Scholar
  28. 28.
    Y. Inagaki, H. Furuya, Y. Ono et al., Effects of α-decay on mechanical properties of simulated nuclear waste glass. Mater. Res. Soc. Symp. Proc. 294, 191–198 (1992). CrossRefGoogle Scholar
  29. 29.
    A. Abbas, Y. Serruys, D. Ghaleb et al., Evolution of nuclear glass structure under α-irradiation. Nucl. Instrum. Methods B 166–167, 445–450 (2000)CrossRefGoogle Scholar
  30. 30.
    D.A. Kilymis, J.M. Delaye, Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest. J. Chem. Phys. 141, 014504 (2014). CrossRefGoogle Scholar
  31. 31.
    C. Mendoza, S. Peuget, T. Charpentier et al., Oxide glass structure evolution under swift heavy ion irradiation. Nucl. Instrum. Methods B 325, 54–65 (2014). CrossRefGoogle Scholar
  32. 32.
    L.H. Kieu, J.M. Delaye, C. Stolz, Modeling the effect of composition and thermal quenching on the fracture behavior of borosilicate glass. J. Non-Cryst. Solids 358, 3268–3279 (2012). CrossRefGoogle Scholar
  33. 33.
    R. Boffy, S. Peuget, R. Schweins et al., High thermal neutron flux effects on structural and macroscopic properties of alkali-borosilicate glasses used as neutron guide substrate. Nucl. Instrum. Methods B 374, 14–19 (2016). CrossRefGoogle Scholar
  34. 34.
    H.B. Peng, M.L. Sun, K.J. Yang et al., Effect of irradiation on hardness of borosilicate glass. J. Non-Cryst. Solids 443, 143–147 (2016). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xin Du
    • 1
  • Tian-Tian Wang
    • 1
  • Bing-Huang Duan
    • 1
  • Xiao-Yang Zhang
    • 1
  • Feng-Fei Liu
    • 1
  • Chang-Lin Lan
    • 1
  • Guang-Fu Wang
    • 2
  • Liang Chen
    • 1
  • Hai-Bo Peng
    • 1
    Email author
  • Tie-Shan Wang
    • 1
    Email author
  1. 1.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Beam Technology and Material Modification of Ministry of EducationBeijing Normal UniversityBeijingChina

Personalised recommendations