Advertisement

Heavy-ion and pulsed-laser single event effects in 130-nm CMOS-based thin/thick gate oxide anti-fuse PROMs

  • Chang Cai
  • Tian-Qi Liu
  • Xiao-Yuan Li
  • Jie LiuEmail author
  • Zhan-Gang Zhang
  • Chao Geng
  • Pei-Xiong Zhao
  • Dong-Qing Li
  • Bing Ye
  • Qing-Gang Ji
  • Li-Hua Mo
Article
  • 11 Downloads

Abstract

Single event effects of 1-T structure programmable read-only memory (PROM) devices fabricated with a 130-nm complementary metal oxide semiconductor-based thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset (SEU) for radiation-hardened PROMs were measured using a linear energy transfer (LET) ranging from 9.2 to 95.6 MeV cm2 mg−1. The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm2 mg−1, which was lower than the threshold of ~ 20 MeV cm2 mg−1 for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing 209Bi ions with extremely high LET values (~ 91.6 MeV cm2 mg−1) and large ion fluence (~ 1 × 108 ions cm−2). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device. This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a 181Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRÈME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.

Keywords

Anti-fuse PROM Single event effects Heavy ions Pulsed laser Space error rate 

References

  1. 1.
    S.M. Guertin, G.M. Swift, D. Nguyen, Single-event upset test results for the Xilinx XQ1701L PROM, in Radiation Effects Data Workshop (REDW), 1999 IEEE (1999), pp. 35–40.  https://doi.org/10.1109/redw.1999.816054
  2. 2.
    J. George, G. Swift, S. Guertin et al., Heavy ion SEE testing of Xilinx One-time programmable configuration PROMs, in Radiation Effects Data Workshop (REDW), 2004 IEEE (2004), pp. 72–78.  https://doi.org/10.1109/redw.2004.1352908
  3. 3.
    C.P. Han, L. Zhang, Y.P. Zou et al., Design and implementation of high reliable spaceborne reconfiguration system, in International Conference on Electronics Information and Emergency Communication (ICEIEC), 2016 IEEE (2016), pp. 273–277.  https://doi.org/10.1109/iceiec.2016.7589737
  4. 4.
    S. Chiang, R. Wang, J. Chen, et al., Oxide-Nitride-Oxide antifuse reliability, in International Reliability Physics Symposium 28th Annual Proceedings(IRPS), 1990 IEEE (1990) pp. 186–192.  https://doi.org/10.1109/relphy.1990.66084
  5. 5.
    O. Kim, C.J. Oh, K.S. Kim, CMOS trimming circuit based on polysilicon fusing. Electron. Lett. 34, 355–356 (1998).  https://doi.org/10.1049/el:19980320 CrossRefGoogle Scholar
  6. 6.
    E. Hamdy, J. McCollum, S.O. Chen et al., Dielectric based antifuse for logic and memory ICs, in IEDM Technical Digest (IEDM), 1988 IEEE (1988), pp. 786–789.  https://doi.org/10.1109/iedm.1988.32929
  7. 7.
    X. Fan, Dissertation, University of Electronic Science and Technology of China, 2011 (in Chinese) Google Scholar
  8. 8.
    L. Zou, Y.L. Deng, G.X. Pei, M. Du, Research on SEU characteristics of PROM bit-cells. Comput. Meas. Control 21, 2544–2546 (2013).  https://doi.org/10.16526/j.cnki.11-4762/tp.2013.09.064. (in Chinese) CrossRefGoogle Scholar
  9. 9.
    C. Geng, J. Liu, K. Xi et al., Monte Carlo evaluation of spatial multiple-bit upset sensitivity to oblique incidence. Chin. Phys. B 22, 059501 (2013).  https://doi.org/10.1088/1674-1056/22/5/059501 CrossRefGoogle Scholar
  10. 10.
    C. Geng, X.Y. Li, Y. Lin et al., Investigation single event effects characterization on configuration PROMs of FPGA induced by heavy ions. Nucl. Phys. Rev. 33, 359–363 (2016).  https://doi.org/10.11804/NuclPhysRev.33.03.358. (in Chinese) CrossRefGoogle Scholar
  11. 11.
    J.L. Barth, C.S. Dyer, E.G. Stassinopoulos et al., Space, atmospheric, and terrestrial radiation environments. IEEE Trans. Nucl. Sci. 50, 466–481 (2003).  https://doi.org/10.1109/TNS.2003.813131 CrossRefGoogle Scholar
  12. 12.
    J. Liu, J.L. Duan, M.D. Hou et al., SEU ground and flight data in static random access memories. Nucl. Instrum. Methods Phys. Res., Sect. B 245, 342–345 (2006).  https://doi.org/10.1016/j.nimb.2005.11.125 CrossRefGoogle Scholar
  13. 13.
    Z.G. Zhang, J. Liu, M.D. Hou et al., Angular dependence of multiple-bit upset response in static random access memories under heavy ion irradiation. Chin. Phys. B 8, 086102 (2013).  https://doi.org/10.1088/1674-1056/22/8/086102 CrossRefGoogle Scholar
  14. 14.
    S.P. Buchner, F. Miller, V. Pouget et al., Pulsed-laser testing for single-event effects investigations. IEEE Trans. Nucl. Sci. 60, 1852–1875 (2013).  https://doi.org/10.1109/TNS.2013.2255312 CrossRefGoogle Scholar
  15. 15.
    Y.G. Jiang, G.Q. Feng, Z. Xiang et al., Pulsed laser method for SEE testing in FPGAs. Atom. Energy Sci. Technol. 46, 582–586 (2012).  https://doi.org/10.13700/j.bh.1001-5965.2013.0514. (in Chinese) CrossRefGoogle Scholar
  16. 16.
    G.Q. Feng, Y.G. Jiang, Z. Xiang et al., Comparison of multi-bit upset in FPGA induced by pulsed laser and heavy ions. Atom. Energy Sci. Technol. 48, 732–736 (2014).  https://doi.org/10.7538/yzk.2014.48.S0.0732. (in Chinese) CrossRefGoogle Scholar
  17. 17.
    R.A. Weller, M.H. Mendenhall, R.A. Reed et al., Monte Carlo simulation of single event effects. IEEE Trans. Nucl. Sci. 57, 1726–1740 (2010).  https://doi.org/10.1109/TNS.2010.2044807 CrossRefGoogle Scholar
  18. 18.
    A.J. Tylka, J.H. Adams, P.R. Boberg et al., CREME96: a revision of the cosmic ray effects on micro-electronics code. IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).  https://doi.org/10.1109/TNS.2012.2218831 CrossRefGoogle Scholar
  19. 19.
    M.H. Mendenhall, R.A. Weller, A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations. Nucl. Instrum. Methods A 667, 38–43 (2012).  https://doi.org/10.1016/j.nima.2011.11.084 CrossRefGoogle Scholar
  20. 20.
    E.L. Petersen, The SEU figure of merit and proton upset rate calculations. IEEE Trans. Nucl. Sci. 45, 2550–2562 (1998).  https://doi.org/10.1109/23.736497 CrossRefGoogle Scholar
  21. 21.
    J. Barak, R.A. Reed, K.A. LaBel, On the figure of merit model for SEU rate calculations. IEEE Trans. Nucl. Sci. 46, 1504–1510 (1999).  https://doi.org/10.1109/23.819114 CrossRefGoogle Scholar
  22. 22.
    P.E. Dodd, L.W. Massengill, Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans. Nucl. Sci. 50, 583–601 (2003).  https://doi.org/10.1109/TNS.2003.813129 CrossRefGoogle Scholar
  23. 23.
    P. Francis, J.P. Colinge, G. Berger, Temporal analysis of SEU in SOI/GAA SRAMs. IEEE Trans. Nucl. Sci. 42, 2127–2137 (1995).  https://doi.org/10.1109/23.489263 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chang Cai
    • 1
    • 2
  • Tian-Qi Liu
    • 1
    • 2
    • 3
  • Xiao-Yuan Li
    • 4
  • Jie Liu
    • 1
    • 2
    Email author
  • Zhan-Gang Zhang
    • 5
  • Chao Geng
    • 4
  • Pei-Xiong Zhao
    • 1
    • 2
  • Dong-Qing Li
    • 1
    • 2
  • Bing Ye
    • 1
  • Qing-Gang Ji
    • 1
    • 2
  • Li-Hua Mo
    • 1
    • 2
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Physical Science and TechnologyLanzhou UniversityLanzhouChina
  4. 4.Academy of Shenzhen State Microelectronic Co., Ltd.ShenzhenChina
  5. 5.Science and Technology on Reliability Physics and Application of Electronic Component LaboratoryGuangzhouChina

Personalised recommendations