Advertisement

TRISO fuel volume fraction and homogeneity: a nondestructive characterization

  • K. V. Vrinda DeviEmail author
  • J. N. Dubey
  • Jyoti Gupta
  • I. H. Shaikh
Article

Abstract

A new nondestructive method to estimate the volume fraction and homogeneity of tristructural isotropic (TRISO)-coated fuel particles in fuel compacts designed for high-temperature reactors has been developed using image analysis of conventional X-radiographs. The method is demonstrated on surrogate fuel compacts containing TRISO-coated particles with kernels made of zirconium dioxide. The methodology incorporates a correction for superimposed images of TRISO particles such that a single X-ray image obtained in any one random orientation is sufficient to characterize the fuel compact in terms of volume fraction and homogeneity. The method is based on the virtual segregation of images of each particle inside the compact with the aid of a calibration standard.

Keywords

TRISO Volume fraction Homogeneity Radiography 

Notes

Acknowledgements

The authors express their sincere gratitude to Shri Vivek Bhasin, Associate Director, NFG, BARC for their valuable support. Valuable inputs from Shri P. S. Kutty and Shri D. M. Mohod Retd. Officers, Radiometallurgy division, BARC, are gratefully acknowledged.

References

  1. 1.
    H. Nickel, K. Hofmann, W. Wachholz et al., The helium-cooled high-temperature reactor in the Federal Republic of Germany safety features, integrity concept, outlook for design codes and licensing procedures. Nucl. Eng. Des. 127, 181–190 (1991).  https://doi.org/10.1016/0029-5493(91)90015-a CrossRefGoogle Scholar
  2. 2.
    E. Teuchert, R.B. Rossa, K.A. Haas et al., Physics features of the HTR for process heat. Nucl. Eng. Des. 78(2), 147–154 (1984).  https://doi.org/10.1016/0029-5493(84),90300-5 CrossRefGoogle Scholar
  3. 3.
    R.E. Bullock, Design of coated fuel particles for a hybrid fusion–fission system. Nucl. Eng. Des. 61, 331–345 (1980).  https://doi.org/10.1016/0029-5493(80),90005-9 CrossRefGoogle Scholar
  4. 4.
    IAEA-TECDOC-1645, High Temperature Gas Cooled Reactor Fuels and Materials (2010) ISBN: 978-92-0-153110-2Google Scholar
  5. 5.
    K. Sawa, T. Tobita, H. Mogi et al., Fabrication of the first-loading fuel of the high temperature engineering test reactor. J. Nucl. Sci. Technol. 36, 683–690 (1999).  https://doi.org/10.1080/18811248.1999.9726255 CrossRefGoogle Scholar
  6. 6.
    I.V. Dulera, R.K. Sinha, High temperature reactors. J. Nucl. Mater. 383, 183–188 (2008).  https://doi.org/10.1016/j.jnucmat.2008.08.056 CrossRefGoogle Scholar
  7. 7.
    R.K. Sinha, I.V. Dulera, Carbon based materials—applications in high temperature nuclear reactors. Ind. J. Eng. Mat. Sci. 17, 321–326 (2010)Google Scholar
  8. 8.
    R.V. Pai, P.K. Mollick, A. Kumar et al., Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors. J. Nucl. Mater. 473, 229–236 (2016).  https://doi.org/10.1016/j.jnucmat.2016.02.030 CrossRefGoogle Scholar
  9. 9.
    K. Sawa, S. Suzuki, S. Shiozawa et al., Safety criteria and quality control of HTTR fuel. Nucl. Eng. Des. 208, 305–313 (2001).  https://doi.org/10.1016/s0029-5493(01)00358-2 CrossRefGoogle Scholar
  10. 10.
    F. Charollais, C. Perrais, D. Moulinier et al., Latest achievements of CEA and AREVA NP on HTR fuel fabrication. Nucl. Eng. Des. 238, 2854–2860 (2008).  https://doi.org/10.1016/j.nucengdes.2008.01.020 CrossRefGoogle Scholar
  11. 11.
    J.N. Dubey, B.P. Patil, D.M. Mohod et al., A technique for gross evaluation of TRISO coated particle distribution in fuel compacts for CHTR-CF, in Proceedings of International Conference on Character Quality Control Nuclear Fuels (CQCNF) 152 (2012). www.inis.iaea.org/search/search.aspx?origq=RN:43034450
  12. 12.
    P.R. Hania, B. Janssen, A.V. Fedorov et al., Qualification of HTR pebbles by X-ray tomography and thermal analysis. Nucl. Eng. Des. 251, 47–52 (2012).  https://doi.org/10.1016/j.nucengdes.2011.11.036 CrossRefGoogle Scholar
  13. 13.
    J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest, (version 1.4) [Online] National Institute of Standards and Technology, Gaithersburg. https://dx.doi.org/10.18434/T4D01F
  14. 14.
    K.V. Vrinda Devi, J. Gupta, J.N. Dubey et al., Image analysis for virtual segregation of overlapped radiographic images. e-J. Nondestr. Test. NDT.net issue 20(6) (2015). ISSN: 1435-4934 www.ndt.net/?id=17832

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. V. Vrinda Devi
    • 1
    Email author
  • J. N. Dubey
    • 1
  • Jyoti Gupta
    • 1
  • I. H. Shaikh
    • 1
  1. 1.Radiometallurgy DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations