High-resolution pixelated CdZnTe detector prototype system for solar hard X-ray imager

  • Shen Wang
  • Jian-Hua GuoEmail author
  • Yan Zhang
  • Wei Chen


A multichannel low-noise electronic prototype system was designed for a pixelated CdZnTe detector. This system is the result of preliminary work on a solar hard X-ray imager, which is one of the three payloads for future solar observations satellite- Advanced Space-based Solar Observatory (ASO-S). A new charge-sensitive amplifier application-specific integrated circuit, VATA450.3, with an on-chip analog-to-digital converter, is used to read out \(8 \times 8\) anode pixel signals. Two CdZnTe detectors with a thickness of 2 mm and 5 mm were tested. The 2-mm-thick detector achieved energy resolution better than 5% (full-width at half-maximum, FWHM) at 59.5 keV, and the 5-mm-thick detector had better resolution than 1.2% (FWHM) at 662 keV. The design and test results of the prototype system are discussed in this paper.


CdZnTe Readout system Solar observation Hard X-ray imager 


  1. 1.
    H.H. Barrett, J.D. Eskin, H.B. Barber, Charge transport in arrays of semiconductor gamma-ray detectors. Phy. Rev. Lett. 75, 156 (1995). CrossRefGoogle Scholar
  2. 2.
    F. Zhang, Z. He, G.F. Knoll et al., 3-D position sensitive CdZnTe spectrometer performance using third generation VAS/TAT readout electronics. IEEE. T. Nucl. Sci. 52–5, 2009 (2005). CrossRefGoogle Scholar
  3. 3.
    A. Brambilla, P. Ouvrier-Buffet, G. Gonon et al., Fast CdTe and CdZnTe semiconductor detector arrays for spectroscopic X-ray imaging. IEEE. T. Nucl. Sci. 60–1, 408 (2013). CrossRefGoogle Scholar
  4. 4.
    K. Lee, J.W. Martin, A. Garson et al., Development of CZT detectors for X-ray and gamma-ray astronomy. Proc. SPIE 8142, 81420D (2011). CrossRefGoogle Scholar
  5. 5.
    N. Gehrels, G. Chincarini, P. Giommi et al., The Swift gamma-ray burst mission. APJ 611, 1005 (2004). CrossRefGoogle Scholar
  6. 6.
    F.A. Harrison, W.W. Craig, F.E. Christensen et al., The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. APJ 770, 103 (2013). CrossRefGoogle Scholar
  7. 7.
    J. Grindlay, N. Gehrels, F. Harrison et al., EXIST’s gamma-ray burst sensitivity. Proc. AIP 662, 477 (2003). CrossRefGoogle Scholar
  8. 8.
    W.Q. Gan, Y.Y. Deng, H. Li et al., ASO-S: Advanced Space-based Solar Observatory. Proc. SPIE 9604, 96040T (2015). CrossRefGoogle Scholar
  9. 9.
    G.Q. Zha, T. Wang, Y.D. Xu et al., The development of CZT semiconductor X-ray and g-ray detectors. Physics 12, 007 (2013). CrossRefGoogle Scholar
  10. 10.
    O. Toker, S. Masciocchi, E. Nygård et al., VIKING, a CMOS low noise monolithic 128 channel frontend for Si-strip detector readout. Nucl. Instrum. Methods Phys. Res. Sect. A 340–3, 572 (1994). CrossRefGoogle Scholar
  11. 11.
    Y.F. Dong, F. Zhang, R. Qiao et al., DAMPE silicon tracker on-board data compression algorithm. Chin. Phys. C 39–11, 116202 (2015). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shen Wang
    • 1
    • 2
    • 3
  • Jian-Hua Guo
    • 1
    • 2
    • 3
    Email author
  • Yan Zhang
    • 1
    • 2
  • Wei Chen
    • 1
    • 2
    • 4
  1. 1.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.Key Laboratory of Dark Matter and Space AstronomyChinese Academy of SciencesNanjingChina
  3. 3.School of Astronomy and Space ScienceUniversity of Science and Technology of ChinaNanjingChina
  4. 4.University of Chinese Academy of ScienceBeijingChina

Personalised recommendations