Advertisement

Radiological characterization of building materials used in Malaysia and assessment of external and internal doses

  • Shittu Abdullahi
  • Aznan Fazli IsmailEmail author
  • Supian Samat
Article

Abstract

In this study, the activity concentrations of 226Ra, 232Th, 222Rn, and 40K, emanation fractions (P), equilibrium equivalent concentration (EEC), and mass exhalation rates (Em) of radon released from building materials used in Malaysia were studied using gamma-ray spectrometer with HPGe detector. Radiological parameters [activity concentration index (ACI), indoor air-absorbed dose rate (Din), annual effective dose (AEDin) from external and internal (ERn), soft tissues (HST) and lung (HL), and effective dose equivalent (Heff)] were estimated to evaluate radiological hazards due to the use of these building materials: sand, cement, gravel, bricks, tiles, fly ash, white cement, and ceramic raw materials. The measured P, EEC, and Em vary from 10 to 30%, 0.9 to 22 Bq m−3, and 33 to 674 mBq h−1 kg−1, respectively, while the calculated ACI and AEDin vary from 0.1 ± 0.01 to 2.1 ± 0.1 and 0.1 ± 0.01 to 2.4 ± 0.6 mSv y−1, respectively. On the other hand, the internal annual effective dose ranges from 0.1 to 1.4 mSv y−1. The estimated radiological risk parameters were below the recommended maximum values, and radiological hazards associated with building materials under investigation are therefore negligible.

Keywords

Indoor radon Emanation fraction Equilibrium equivalent concentration Mass exhalation rate Annual effective dose Effective dose equivalent 

Notes

Acknowledgements

The authors would like to acknowledge all laboratory technicians of the Nuclear Science Program, UKM, for their technical support throughout the works. Shittu Abdullahi also wishes to appreciate and acknowledge Gombe State University, Gombe, Nigeria, for providing the Ph.D fellowship.

References

  1. 1.
    EC, Radiation Protection 112: Radiological Protection Principles concerning the Natural Radioactivity of Building Materials, Finland (1999), https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf. Accessed 20 July 2017
  2. 2.
    NEA-OECD, Exposure to Radiation from Natural Radioactivity in Building Materials (1979), pp. 1–34. https://www.oecd-nea.org/rp/reports/1979/exposure-to-radiation-1979.pdf
  3. 3.
    ICRP Publication 65, Protection against radon-222 at home and at work. A report of a task group of the international commission on radiological protection (ICRP Publication 65, PERGAMON, 1993)Google Scholar
  4. 4.
    ICRP Publication 115, Lung Cancer Risk from Radon and Progeny and Statement on Radon (2010).  https://doi.org/10.1016/j.icrp.2011.08.011
  5. 5.
    S. Abdullahi, A.F. Ismail, S.B. Samat et al., Assessment of natural radioactivity and associated radiological risks from tiles used in Kajang, Malaysia. Am Inst Phys 1940(020001), 1–6 (2018).  https://doi.org/10.1063/1.5027916 CrossRefGoogle Scholar
  6. 6.
    A.D. Bajoga, N. Alazemi, P.H. Regan et al., Radioactive investigation of NORM samples from Southern Kuwait soil using high-resolution gamma-ray spectroscopy. Radiat. Phys. Chem. 116, 305–311 (2015).  https://doi.org/10.1016/j.radphyschem.2015.01.041 CrossRefGoogle Scholar
  7. 7.
    A.A. Safarov, A.N. Safarov, A.N. Azimov et al., Rapid assessment methodology in NORM measurements from building materials of Uzbekistan. J. Environ. Radioact. 169, 186–191 (2017).  https://doi.org/10.1016/j.jenvrad.2017.01.019 CrossRefGoogle Scholar
  8. 8.
    K. Yuvi, Indoor air quality: radon report on a WHO Working. J. Environ. Radioact. 8, 73–91 (1988)CrossRefGoogle Scholar
  9. 9.
    M. Kaur, A. Kumar, R. Mehra et al., Study of radon/thoron exhalation rate, soil-gas radon concentration, and assessment of indoor radon/thoron concentration in Siwalik Himalayas of Jammu & Kashmir. Hum. Ecol. Risk Assess. Int. J. (2018).  https://doi.org/10.1080/10807039.2018.1443793 CrossRefGoogle Scholar
  10. 10.
    Ö. Karadeniz, G. Günalp, T. Özbay et al., Preliminary dose estimation from indoor radon for the medical staff of Radiation Oncology and Nuclear Medicine. Hum. Ecol. Risk Assess. Int. J. 22(7), 1574–1582 (2016).  https://doi.org/10.1080/10807039.2016.1202084 CrossRefGoogle Scholar
  11. 11.
    WHO, WHO Handbook on Indoor Radon: A Public Health Perspective, World Health Organization (2009). http://www.nrsb.org/pdf/WHORadonHandbook.pdf. Accessed 29 Sept 2017
  12. 12.
    US NTP, 14th Report on Carcinogens (Ionizing Radiation) (2016). https://ntp.niehs.nih.gov/ntp/roc/content/profiles/ionizingradiation.pdf. Accessed 24 May 2018
  13. 13.
    IAEA, Protection of the public against exposure indoors due to radon and other natural sources of radiation, Vienna (2015). https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1651Web-62473672.pdf. Accessed 24 May 2018
  14. 14.
    IARC, Evaluation of the Carcinogenic Risks to Humans, Lyon (1988). http://monographs.iarc.fr/ENG/Monographs/vol43/mono43.pdf. Accessed 24 May 2018
  15. 15.
    E. Abuelhia, Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia. Radiat. Phys. Chem. 140, 137–140 (2017).  https://doi.org/10.1016/j.radphyschem.2017.03.004 CrossRefGoogle Scholar
  16. 16.
    S. Sun, J.H. Schiller, A.F. Gazdar, Lung cancer in never smokers—a different disease. Nat. Rev. Cancer 7, 778–790 (2007).  https://doi.org/10.1038/nrc2190 CrossRefGoogle Scholar
  17. 17.
    M. Torres-Durán, J.M. Barros-Dios, A. Fernández-Villar et al., Residential radon and lung cancer in never smokers. A systematic review. Cancer Lett. 345, 21–26 (2014).  https://doi.org/10.1016/j.canlet.2013.12.010 CrossRefGoogle Scholar
  18. 18.
    MNCR, Malaysian National Cancer Registry Report 2007–2011, Putrajaya (2016). http://nci.moh.gov.my
  19. 19.
    M. Pérez-Ríos, J.M. Barros-Dios, A. Montes-Martínez et al., Attributable mortality to radon exposure in Galicia, Spain. Is it necessary to act in the face of this health problem? BMC Public Health. 10, 256–262 (2010). http://www.biomedcentral.com/1471-2458/10/256. Accessed 26 May 2018
  20. 20.
    IAEA, Measurement of Radionuclides in Food and the Environment, IAEA, Vienna (1989). http://www-pub.iaea.org/MTCD/Publications/PDF/trs295_web.pdf. Accessed 10 Oct 2017
  21. 21.
    ADVANCETECH, High-purity Germanium (HPGe) Detectors, Adv. Technol. Gr. https://www.advancetech.in/hpge-detector. Accessed 18 May 2018
  22. 22.
    M.S. Yasir, A.A. Majid, R. Yahaya, Study of natural radionuclides and its radiation hazard index in Malaysian building materials. J. Radioanal. Nucl. Chem. 273(3), 539–541 (2007).  https://doi.org/10.1007/s10967-007-0905-7 CrossRefGoogle Scholar
  23. 23.
    CANBERRA. Spectrum Analysis (Mirion Technologies, 2010), http://www.canberra.com/literature/fundamental-principles/pdf/Spectrum-Analysis.pdf. Accessed 7 Apr 2018
  24. 24.
    K.F. Jamil, S. Ali, H.A. Khan, Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters. Nucl. Instrum. Methods A 388, 267–272 (1997)CrossRefGoogle Scholar
  25. 25.
    IAEA, Measurement and Calculation of Radon Releases from NORM Residues, Vienna (2013)Google Scholar
  26. 26.
    A. Sakoda, Y. Nishiyama, K. Hanamoto et al., Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil. Appl. Radiat. Isot. 68, 1180–1184 (2010).  https://doi.org/10.1016/j.apradiso.2009.12.036 CrossRefGoogle Scholar
  27. 27.
    B.K. Sahoo, D. Nathwani, K.P. Eappen et al., Estimation of radon emanation factor in Indian building materials. Radiat. Meas. 42, 1422–1425 (2007).  https://doi.org/10.1016/j.radmeas.2007.04.002 CrossRefGoogle Scholar
  28. 28.
    UNSCEAR, Sources, Effects and Risks of Ionising Radiation (Exposures from Natural Sources of Radiation), New York, 1988Google Scholar
  29. 29.
    S.D.E. Martino, C. Sabbarese, G. Monetti, Radon emanation and exhalation rates from soils measured with an electrostatic collector. Appl. Radiat. Isot. 49, 407–413 (1998)CrossRefGoogle Scholar
  30. 30.
    P. Bossew, The radon emanation power of building materials, soils and rocks. Appl. Radiat. Isot. 59, 389–392 (2003).  https://doi.org/10.1016/j.apradiso.2003.07.001 CrossRefGoogle Scholar
  31. 31.
    M. Markkanen, Radiation Dose Assessments for Materials with Elevated Natural Radioactivity (1995). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/021/28021209.pdf
  32. 32.
    A.F. Saad, R.M. Abdallah, N.A. Hussein, Radon exhalation from Libyan soil samples measured with the SSNTD technique. Appl. Radiat. Isot. 72, 163–168 (2013)CrossRefGoogle Scholar
  33. 33.
    Argonne National Laboratory, Potassium-40 (2005). http://phi.nmsu.edu/~pvs/teaching/phys593/potassium.pdf. Accessed 13 May 2018
  34. 34.
    UNSCEAR, Sources and Effects of Ionizing Radiation (Natural Sources of Radiation), New York (1977). http://www.unscear.org/docs/publications/1977/UNSCEAR_1977_Annex-B.pdf. Accessed 21 Jan 2018
  35. 35.
    UNSCEAR, Sources and effects of ionizing radiation (Exposures from Natural Radiation Sources), New York, 2000Google Scholar
  36. 36.
    M. Jang, K.H. Chung, Y.Y. Ji et al., Indoor external and internal exposure due to building materials containing NORM in Korea. J. Radioanal. Nucl. Chem. 307, 1661–1666 (2016).  https://doi.org/10.1007/s10967-015-4375-z CrossRefGoogle Scholar
  37. 37.
    J. Ge, J. Zhang, Natural radioactivity and radiation hazards of building materials in Anhui Province, China. J. Radioanal. Nucl. Chem. 304, 609–613 (2015).  https://doi.org/10.1007/s10967-014-3891-6 CrossRefGoogle Scholar
  38. 38.
    P. Sola, W. Srinuttrakul, S. Laoharojanaphand et al., Estimation of indoor radon and the annual effective dose from building materials by ionization chamber measurement. J. Radioanal. Nucl. Chem. 302, 1531–1535 (2014).  https://doi.org/10.1007/s10967-014-3716-7 CrossRefGoogle Scholar
  39. 39.
    P. Sola, W. Srinuttrakul, P. Kewsuwan, Estimation of the indoor radon and the annual effective dose from granite samples. J. Phys. Conf. Ser. 611, 012013 (2015).  https://doi.org/10.1088/1742-6596/611/1/012013 CrossRefGoogle Scholar
  40. 40.
    H. Tsuruoka, K. Inoue, S. Hosokawa et al., Measurement of radon and thoron concentrations in the Tokyo Metropolitan University Arakawa Campus building. J. Jpn. Acad. Heal. Sci. 19, 40–48 (2016)Google Scholar
  41. 41.
    K. Ivanova, Z. Stojanovska, M. Tsenova et al., Building-specific factors affecting indoor radon concentration variations in different regions in Bulgaria. Air Qual. Atmos. Heal. 10(9), 1151–1161 (2017).  https://doi.org/10.1007/s11869-017-0501-0 CrossRefGoogle Scholar
  42. 42.
    I. Sarrou, I. Pashalidis, Radon exhalation from granite countertops and expected indoor radon levels. J. Radioanal. Nucl. Chem. 311, 913–916 (2017).  https://doi.org/10.1007/s10967-016-5108-7 CrossRefGoogle Scholar
  43. 43.
    L. Pilkyte, D. Butkus, Influence of gamma radiation of indoor radon decay products on absorbed dose rate. J. Environ. Eng. Landsc. Manag. 13, 65–72 (2005)CrossRefGoogle Scholar
  44. 44.
    C. Cosma, K. Szacsvai, A. Dinu et al., Preliminary integrated indoor radon measurements in Transylvania (Romania). Isot. Environ. Health Stud. 45, 259–268 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Al-Hubail, D. Al-Azmi, Radiological assessment of indoor radon concentrations and gamma dose rates in secondary school buildings in Kuwait. Constr. Build. Mater. 183, 1–6 (2018).  https://doi.org/10.1016/j.conbuildmat.2018.06.152 CrossRefGoogle Scholar
  46. 46.
    S.M. Farid, Indoor radon in dwellings of Jeddah city, Saudi Arabia and its correlations with the radium and radon exhalation rates from soil. Indoor Built Environ. 25, 269–278 (2016).  https://doi.org/10.1177/1420326X14536749 CrossRefGoogle Scholar
  47. 47.
    Z. Yarar, C. Taşköprü, M. Içhedef et al., Indoor radon levels of spas and dwellings located around BayIndIr geothermal region. J. Radioanal. Nucl. Chem. 299, 343–349 (2014).  https://doi.org/10.1007/s10967-013-2726-1 CrossRefGoogle Scholar
  48. 48.
    M. Al Mugahed, F. Bentayeb, Radon exhalation from building materials used in Yemen. Radiat. Prot. Dosim. (2018).  https://doi.org/10.1093/rpd/ncy081 CrossRefGoogle Scholar
  49. 49.
    L. Sahin, H. Cetinkaya, S. Gelgun, Assessment of annual effective dose due to the indoor radon exposure in a second-degree earthquake zone of Kutahya (Turkey). Rom. J. Phys. 61, 687–696 (2016)Google Scholar
  50. 50.
    M. Abd-Elzaher, Measurement of indoor radon concentration and assessment of doses in different districts of Alexandria city, Egypt. Environ. Geochem. Health 35, 299–309 (2013).  https://doi.org/10.1007/s10653-012-9494-7 CrossRefGoogle Scholar
  51. 51.
    C.Y. Ansre, M.K. Miyittah, A.B. Andam et al., Risk assessment of radon in the South Dayi District of the Volta Region, Ghana. J. Radiat. Res. Appl. Sci. 11, 10–17 (2018).  https://doi.org/10.1016/J.JRRAS.2017.10.002 CrossRefGoogle Scholar
  52. 52.
    O.S. Ajayi, O.E. Olubi, Investigation of indoor radon levels in some dwellings of southwestern Nigeria. Environ. Forensics 17, 275–281 (2016).  https://doi.org/10.1080/15275922.2016.1230909 CrossRefGoogle Scholar
  53. 53.
    A.E.A. Elzain, Radon exhalation rates from some building materials used in Sudan. Indoor Built Environ. 24, 852–860 (2015).  https://doi.org/10.1177/1420326X14537285 CrossRefGoogle Scholar
  54. 54.
    M. Kumar, A. Agrawal, R. Kumar, Radiation dose due to radon, thoron and their decay products in indoor environment of Khurja City, U.P., India. J. Radioanal. Nucl. Chem. 300, 39–44 (2014).  https://doi.org/10.1007/s10967-014-2946-z CrossRefGoogle Scholar
  55. 55.
    T.H. Park, D.R. Kang, S.H. Park et al., Indoor radon concentration in Korea residential environments. Environ. Sci. Pollut. Res. 1, 5 (2018).  https://doi.org/10.1007/s11356-018-1531-3 CrossRefGoogle Scholar
  56. 56.
    W. Schroeyers, Z. Sas, G. Bator et al., Use of NORM-containing products in construction: the NORM4Building database, a tool for radiological assessment when using by-products in building materials. Constr. Build. Mater. 159, 755–767 (2018).  https://doi.org/10.1016/j.conbuildmat.2017.11.037 CrossRefGoogle Scholar
  57. 57.
    A.L. Da Costa Leal, D. Do Carmo Lauria, Assessment of doses to members of the public arising from the use of ornamental rocks in residences. J. Radiol. Prot. 36, 680–694 (2016)CrossRefGoogle Scholar
  58. 58.
    R. Ravisankar, K. Vanasundari, A. Chandrasekaran et al., Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl. Radiat. Isot. 70, 699–704 (2012)CrossRefGoogle Scholar
  59. 59.
    R. Ravisankar, K. Vanasundari, M. Suganya et al., Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl. Radiat. Isot. 85, 114–127 (2014)CrossRefGoogle Scholar
  60. 60.
    ICRP Publication 32, Limits for Inhalation of Radon Daughters by Workers, New York (1981). http://journals.sagepub.com/doi/pdf/10.1177/ANIB_6_1. Accessed 14 May 2018
  61. 61.
    UNSCEAR, Ionizing Radiation:Sources and Biological Effects (Exposures to Radon and Thoron and Their Decay Products), New York, 1982. http://www.unscear.org/docs/publications/1982/UNSCEAR_1982_Annex-D.pdf. Accessed 12 Oct 2017
  62. 62.
    M.Y.M. Ali, M.M. Hanafiah, M.F. Khan, Potential factors that impact the radon level and the prediction of ambient dose equivalent rates of indoor microenvironments. Sci. Total Environ. 626, 1–10 (2018).  https://doi.org/10.1016/j.scitotenv.2018.01.080 CrossRefGoogle Scholar
  63. 63.
    UNSCEAR, Sources and Effects of Ionizing Radiation (Exposure from Natural Sources of Radiation), New York, 1993. http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Annex-A.pdf. Accessed 29 Sept 2017
  64. 64.
    R.I. Obed, H.T. Lateef, A.K. Ademola, Indoor radon survey in a university campus of Nigeria. J. Med. Phys. 35, 242–246 (2010).  https://doi.org/10.4103/0971-6203.71760 CrossRefGoogle Scholar
  65. 65.
    L. Zhang, C. Liu, Q. Guo, Measurements of thoron and radon progeny concentrations in Beijing, China. J. Radiol. Prot. 28, 603–607 (2008).  https://doi.org/10.1088/0952-4746/28/4/N02 CrossRefGoogle Scholar
  66. 66.
    S. Oikawa, N. Kanno, T. Sanada et al., A survey of indoor workplace radon concentration in Japan. J. Environ. Radioact. 87, 239–245 (2006).  https://doi.org/10.1016/j.jenvrad.2005.12.001 CrossRefGoogle Scholar
  67. 67.
    P. Ujić, I. Čeliković, A. Kandić et al., Internal exposure from building materials exhaling 222Rn and 220Rn as compared to external exposure due to their natural radioactivity content. Appl. Radiat. Isot. 68, 201–206 (2010).  https://doi.org/10.1016/j.apradiso.2009.10.003 CrossRefGoogle Scholar
  68. 68.
    M. Kıldır, İ. Gökmen, A. Gökmen, Indoor radon concentrations and radon doses at three districts of Ankara, Turkey and raising public awareness on the issue. J. Radioanal. Nucl. Chem. 307, 777–786 (2016).  https://doi.org/10.1007/s10967-015-4489-3 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shittu Abdullahi
    • 1
    • 3
  • Aznan Fazli Ismail
    • 1
    • 2
    Email author
  • Supian Samat
    • 2
  1. 1.Nuclear Science Program, Faculty of Science and TechnologyUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Centre for Frontier Science, Faculty of Science and TechnologyUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  3. 3.Department of Physics, Faculty of ScienceGombe State UniversityGombeNigeria

Personalised recommendations