Advertisement

Solution of the finite slab criticality problem using an alternative phase function with the second kind of Chebyshev polynomials

  • Hakan ÖztürkEmail author
  • Ökkeş Ege
Article
  • 20 Downloads

Abstract

The critical size of a finite homogenous slab is investigated for one-speed neutrons using the alternative phase function (AG, Anlı–Güngör) in place of the scattering function of the transport equation. First of all, the neutron angular flux expanded in terms of the Chebyshev polynomials of second kind (UN approximation) together with the AG phase function is applied to the transport equation to obtain a criticality condition for the system. Then, using various values of the scattering parameters, the numerical results for the critical half-thickness of the slab are calculated and they are tabulated in the tables together with the ones obtained from the conventional spherical harmonic (PN) method for comparison. They can be said to be in good accordance with each other.

Keywords

Criticality problem UN method Neutron transport equation Alternative phase function 

References

  1. 1.
    B. Davison, Neutron Transport Theory, 1st edn. (Oxford University Press, London, 1958), pp. 116–144Google Scholar
  2. 2.
    K.M. Case, P.F. Zweifel, Linear Transport Theory (Addison-Wesley Publishing Company, Reading, 1967), pp. 10–45zbMATHGoogle Scholar
  3. 3.
    G.I. Bell, S. Glasstone, Nuclear Reactor Theory, 1st edn. (VNR Company, New York, 1972), pp. 33–72Google Scholar
  4. 4.
    D.C. Sahni, N.G. Sjöstrand, N.S. Garis, Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D Appl. Phys. 25, 1381–1389 (1992).  https://doi.org/10.1088/0022-3727/25/10/001 CrossRefGoogle Scholar
  5. 5.
    L.G. Henyey, J.L. Greenstein, Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941).  https://doi.org/10.1086/144246 CrossRefzbMATHGoogle Scholar
  6. 6.
    L.O. Reynolds, N.J. McCormic, Approximate two parameter phase function for light scattering. J. Opt. Soc. Am. 70, 1206–1212 (1980).  https://doi.org/10.1364/JOSA.70.001206 CrossRefGoogle Scholar
  7. 7.
    M.M.R. Williams, A synthetic scattering kernel for particle transport in absorbing media with anisotropic scattering. J. Phys. D Appl. Phys. 11, 2455–2463 (1978).  https://doi.org/10.1088/0022-3727/11/18/004 CrossRefGoogle Scholar
  8. 8.
    P. Liu, A new phase function approximating to Mie scattering for radiative transport equations. Phys. Med. Biol. 39, 1025–1036 (1994).  https://doi.org/10.1088/0031-9155/39/6/008 CrossRefGoogle Scholar
  9. 9.
    F. Anlı, F. Yaşa, S. Güngör, General eigenvalue spectrum in a one-dimensional slab geometry transport equation. Nucl. Sci. Eng. 150, 72–77 (2005)CrossRefGoogle Scholar
  10. 10.
    H. Öztürk, F. Anlı, Diffusion approximation for certain scattering parameters of the Anlı–Güngör phase function. Kerntechnik 77, 381–384 (2012).  https://doi.org/10.3139/124.110216 CrossRefGoogle Scholar
  11. 11.
    H. Öztürk, Application of the Henyey–Greenstein and Anlı–Güngör phase functions for the solution of the neutron transport equation with Legendre polynomials: reflected critical slab problem. Kerntechnik 78, 447–453 (2013).  https://doi.org/10.3139/124.110328 CrossRefGoogle Scholar
  12. 12.
    F. Anlı, S. Güngör, Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry. Appl. Math. Mod. 31, 727–733 (2007).  https://doi.org/10.1016/j.apm.2005.12.005 CrossRefzbMATHGoogle Scholar
  13. 13.
    H. Öztürk, The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering. Kerntechnik 73, 66–74 (2008).  https://doi.org/10.3139/124.100532 CrossRefGoogle Scholar
  14. 14.
    G. Arfken, Mathematical Methods for Physicists, 3rd edn. (Academic Press Inc, London, 1985), pp. 817–879Google Scholar
  15. 15.
    H. Öztürk, F. Anlı, S. Güngör, Application of the U N method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering. Kerntechnik 72, 74–76 (2007).  https://doi.org/10.3139/124.100321 CrossRefGoogle Scholar
  16. 16.
    C.E. Lee, M.P. Dias, Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann. Nucl. Energy 11, 515–530 (1984).  https://doi.org/10.1016/0306-4549(84)90076-8 CrossRefGoogle Scholar
  17. 17.
    C. Yıldız, Variation of the critical slab thickness with the degree of strongly anisotropic scattering in one-speed neutron transport theory. Ann. Nucl. Energy 25, 529–540 (1998).  https://doi.org/10.1016/S0306-4549(97)00114-X CrossRefGoogle Scholar
  18. 18.
    D.C. Sahni, N.G. Sjöstrand, Non-monotonic variation of the criticality factor with the degree of anisotropy in one-speed neutron transport. Trans. Theory Statis. Phys. 20, 339–349 (1991)CrossRefGoogle Scholar
  19. 19.
    F. Yaşa, F. Anlı, S. Güngör, Eigenvalue spectrum with Chebyshev polynomial approximation of the transport equation in slab geometry. J. Quant. Spectros. Rad. Transf. 97, 51–57 (2006).  https://doi.org/10.1016/j.jqsrt.2004.12.017 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesOsmaniye Korkut Ata UniversityOsmaniyeTurkey

Personalised recommendations