Advertisement

Study of the relationship between the local geometric structure and the stability of La0.6Sr0.4MnO3−δ and La0.6Sr0.4FeO3−δ electrodes

  • Cheng-Zhi Guan
  • Jing Zhou
  • Hong-Liang Bao
  • Cheng Peng
  • Xiao Lin
  • Guo-Ping Xiao
  • Jian-Qiang WangEmail author
  • Zhi-Yuan Zhu
Article
  • 24 Downloads

Abstract

Sr-substituted ABO3 perovskite oxides such as La0.6Sr0.4MnO3−δ (LSM) and La0.6Sr0.4FeO3−δ (LSF) are widely used as oxygen electrode materials in solid oxide cells. The substituted Sr is not adequately stable under the operating conditions, because of the surface segregation of Sr. Herein, we focused on investigating the relationship between the local geometric structure due to Sr substitution and stability of LSM and LSF. We characterized the local geometric structure of Sr atoms via X-ray absorption spectroscopy. A greater Debye–Waller factor and a longer bond length of both the second and third Sr–O shells were observed in LSF, which demonstrates that LSF has a higher local structural disorder and that Sr in LSF requires less energy to segregate. After 20 h of heat treatment in the presence of a Fe–Cr alloy interconnect, the Sr/La molar ratio on LSF was observed to be much larger than that on LSM. This result unequivocally suggests that Sr in LSF is not as stable as in LSM, and the reaction between Sr and Cr accelerates the Sr surface segregation in LSF.

Keywords

Solid oxide cell Perovskite Strontium surface segregation X-ray absorption spectroscopy Chromium poisoning 

References

  1. 1.
    S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).  https://doi.org/10.1021/cr020724o CrossRefGoogle Scholar
  2. 2.
    D.J.L. Brett, A. Atkinson, N.P. Brandon et al., Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008).  https://doi.org/10.1039/B612060C CrossRefGoogle Scholar
  3. 3.
    E.V. Tsipis, V.V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J. Solid State Electron. 15, 1007–1040 (2011).  https://doi.org/10.1007/s10008-011-1341-8 CrossRefGoogle Scholar
  4. 4.
    H. Ullmann, N. Trofimenko, F. Tietz et al., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics 138, 79–90 (2000).  https://doi.org/10.1016/S0167-2738(00)00770-0 CrossRefGoogle Scholar
  5. 5.
    C. Xia, W. Rauch, F. Chen et al., Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149, 11–19 (2002).  https://doi.org/10.1016/S0167-2738(02)00131-5 CrossRefGoogle Scholar
  6. 6.
    Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).  https://doi.org/10.1038/nature02863 CrossRefGoogle Scholar
  7. 7.
    W.G. Wang, M. Mogensen, High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ionics 176, 457–462 (2005).  https://doi.org/10.1016/j.ssi.2004.09.007 CrossRefGoogle Scholar
  8. 8.
    P. Hjalmarsson, M. Søgaard, M. Mogensen, Electrochemical performance and degradation of (La0.6Sr0.4)0.99CoO3−δ as porous SOFC-cathode. Solid State Ionics 179, 1422–1426 (2008).  https://doi.org/10.1016/j.ssi.2007.11.010 CrossRefGoogle Scholar
  9. 9.
    S.P. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43, 6799–6833 (2008).  https://doi.org/10.1007/s10853-008-2966-6 CrossRefGoogle Scholar
  10. 10.
    H. Ji, J. Hwang, K.J. Yoon et al., Enhanced oxygen diffusion in epitaxial lanthanum–strontium–cobaltite thin film cathodes for micro solid oxide fuel cells. Energy Environ. Sci. 6, 116–120 (2013).  https://doi.org/10.1039/C2EE21647G CrossRefGoogle Scholar
  11. 11.
    K. Hosoi, H. Hagiwara, S. Ida et al., La0.8Sr0.2FeO3−δ as fuel electrode for solid oxide reversible cells using LaGaO3-based oxide electrolyte. J. Phys. Chem. C 120, 16110–16117 (2016).  https://doi.org/10.1021/acs.jpcc.5b12755 CrossRefGoogle Scholar
  12. 12.
    S.P. Jiang, Issues on development of (La, Sr)MnO3 cathode for solid oxide fuel cells. J. Power Sources 124, 390–402 (2003).  https://doi.org/10.1016/S0378-7753(03)00814-0 CrossRefGoogle Scholar
  13. 13.
    W.A. Harrison, Origin of Sr segregation at La1−xSrxMnO3 surfaces. Phys. Rev. B 83, 155437 (2011).  https://doi.org/10.1103/PhysRevB.83.155437 CrossRefGoogle Scholar
  14. 14.
    H. Ding, A.V. Virkar, M. Liu et al., Suppression of Sr surface segregation in La1−xSrxCo1−yFeyO3: a first principles study. Phys. Chem. Chem. Phys. 15, 489–496 (2013).  https://doi.org/10.1039/C2CP43148C CrossRefGoogle Scholar
  15. 15.
    F. Wang, M. Nishi, M.E. Brito et al., Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs). J. Power Sources 258, 281–289 (2014).  https://doi.org/10.1016/j.jpowsour.2014.02.046 CrossRefGoogle Scholar
  16. 16.
    N. Tsvetkov, Q. Lu, L. Sun et al., Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat. Mater. 15, 1010–1016 (2016).  https://doi.org/10.1038/nmat4659 CrossRefGoogle Scholar
  17. 17.
    Y. Li, W. Zhang, Y. Zheng et al., Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem. Soc. Rev. 46, 6345–6378 (2017).  https://doi.org/10.1039/C7CS00120G CrossRefGoogle Scholar
  18. 18.
    J.A. Kilner, M. Burriel, Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 44, 365–393 (2014).  https://doi.org/10.1146/annurev-matsci-070813-113426 CrossRefGoogle Scholar
  19. 19.
    N. Ortiz-Vitoriano, I.R. Larramendi, S.N. Cook et al., The formation of performance enhancing pseudo-composites in the highly active La1−xCaxFe0.8Ni0.2O3 system for IT-SOFC application. Adv. Funct. Mater. 23, 5131–5139 (2013).  https://doi.org/10.1002/adfm.201300481 CrossRefGoogle Scholar
  20. 20.
    J. Druce, H. Téllez, M. Burriel et al., Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 7, 3593–3599 (2014).  https://doi.org/10.1039/C4EE01497A CrossRefGoogle Scholar
  21. 21.
    N. Caillol, M. Pijolat, E. Siebert, Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Appl. Surf. Sci. 253, 4641–4648 (2007).  https://doi.org/10.1016/j.apsusc.2006.10.019 CrossRefGoogle Scholar
  22. 22.
    T.T. Fister, D.D. Fong, J.A. Eastman et al., In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure. Appl. Phys. Lett. 93, 151904 (2008).  https://doi.org/10.1063/1.2987731 CrossRefGoogle Scholar
  23. 23.
    A.K. Huber, M. Falk, M. Rohnke et al., In situ study of activation and de-activation of LSM fuel cell cathodes—electrochemistry and surface analysis of thin-film electrodes. J. Catal. 294, 79–88 (2012).  https://doi.org/10.1016/j.jcat.2012.07.010 CrossRefGoogle Scholar
  24. 24.
    B. Hu, M. Keane, M.K. Mahapatra et al., Stability of strontium-doped lanthanum manganite cathode in humidified air. J. Power Sources 248, 196–204 (2014).  https://doi.org/10.1016/j.jpowsour.2013.08.098 CrossRefGoogle Scholar
  25. 25.
    X. Chen, Y. Zhen, J. Li et al., Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+δ cathodes of solid oxide fuel cells. Int. J. Hydrogen Energy 35, 2477–2485 (2010).  https://doi.org/10.1016/j.ijhydene.2009.12.185 CrossRefGoogle Scholar
  26. 26.
    S.P. Jiang, X. Chen, Chromium deposition and poisoning of cathodes of solid oxide fuel cells—a review. Int. J. Hydrogen Energy 39, 505–531 (2014).  https://doi.org/10.1016/j.ijhydene.2013.10.042 MathSciNetCrossRefGoogle Scholar
  27. 27.
    B. Wei, K. Chen, L. Zhao et al., Chromium deposition and poisoning at La0.6Sr0.4Co0.2Fe0.8O3 oxygen electrodes of solid oxide electrolysis cells. Phys. Chem. Chem. Phys. 17, 1601–1609 (2015).  https://doi.org/10.1039/c4cp05110f CrossRefGoogle Scholar
  28. 28.
    D. Roehrens, A. Neumann, A. Beez et al., Formation of chromium containing impurities in (La, Sr)MnO3 solidoxidefuelcell cathodes under stack operating conditions and its effect on performance. Ceram. Int. 42, 9467–9474 (2016).  https://doi.org/10.1016/j.ceramint.2016.03.010 CrossRefGoogle Scholar
  29. 29.
    W. Lee, J.W. Han, Y. Chen et al., Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 13, 7909–7925 (2013).  https://doi.org/10.1021/ja3125349 CrossRefGoogle Scholar
  30. 30.
    L. Nie, M. Liu, Y. Zhang et al., La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J. Power Sources 195, 4704–4708 (2010).  https://doi.org/10.1016/j.jpowsour.2010.02.049 CrossRefGoogle Scholar
  31. 31.
    P.Y. Chou, C.J. Ciou, Y.C. Lee et al., Effect of La0.1Sr0.9Co0.5Mn0.5O3−δ protective coating layer on the performance of La0.6Sr0.4Co0.8Fe0.2O3−δ solid oxide fuel cell cathode. J. Power Sources 197, 12–19 (2012).  https://doi.org/10.1016/j.jpowsour.2011.09.017 CrossRefGoogle Scholar
  32. 32.
    D. Ding, M. Liu, Z. Liu et al., Efficient electro-catalysts for enhancing surface activity and stability of SOFC cathodes. Adv. Energy Mater. 3, 1149–1154 (2013).  https://doi.org/10.1002/aenm.201200984 CrossRefGoogle Scholar
  33. 33.
    X. Zhu, D. Ding, Y. Li et al., Development of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode with an improved stability via La0.8Sr0.2MnO3-film impregnation. Int. J. Hydrogen Energy 38, 5375–5382 (2013).  https://doi.org/10.1016/j.ijhydene.2013.02.091 CrossRefGoogle Scholar
  34. 34.
    K. Chen, N. Ai, K.M. O’Donnell et al., Highly chromium contaminant tolerant BaO infiltrated La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells. Phys. Chem. Chem. Phys. 17, 4870–4874 (2015).  https://doi.org/10.1039/c4cp04172k CrossRefGoogle Scholar
  35. 35.
    O. Haas, U.F. Vogt, C. Soltmann et al., The Fe K-edge X-ray absorption characteristics of La1−xSrxFeO3−δ prepared by solid state reaction. Mater. Res. Bull. 44, 1397–1404 (2009).  https://doi.org/10.1016/j.materresbull.2008.11.026 CrossRefGoogle Scholar
  36. 36.
    O. Haas, C. Ludwig, U. Bergmann et al., X-ray absorption investigation of the valence state and electronic structure of La1−xCaxCoO3−δ in comparison with La1−xSrxCoO3−δ and La1−xSrxFeO3−δ. J. Solid State Chem. 184, 3163–3171 (2011).  https://doi.org/10.1016/j.jssc.2011.09.027 CrossRefGoogle Scholar
  37. 37.
    M. Liu, M.E. Lynch, K. Blinn et al., Rational SOFC material design: new advances and tools. Mater. Today 14, 534–546 (2011).  https://doi.org/10.1016/S1369-7021(11)70279-6 CrossRefGoogle Scholar
  38. 38.
    M. Newville, IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).  https://doi.org/10.1107/S0909049500016964 CrossRefGoogle Scholar
  39. 39.
    Y. Orikasa, T. Nakao, M. Oishi et al., Local structural analysis for oxide ion transport in La0.6Sr0.4FeO3−δ cathodes. J. Mater. Chem. 21, 14013–14019 (2011).  https://doi.org/10.1039/C1JM11358E CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Cheng-Zhi Guan
    • 1
    • 2
  • Jing Zhou
    • 1
  • Hong-Liang Bao
    • 1
  • Cheng Peng
    • 1
  • Xiao Lin
    • 1
  • Guo-Ping Xiao
    • 1
  • Jian-Qiang Wang
    • 1
    Email author
  • Zhi-Yuan Zhu
    • 1
  1. 1.Department of Molten Salt Chemistry and Engineering, Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied Physics, Chinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations