Advertisement

Enhanced removal of X-ray-induced carbon contamination using radio-frequency Ar/H2 plasma

  • Yi Wang
  • Qi-Peng LuEmail author
  • Yun-Guo GaoEmail author
  • Xue-Peng Gong
  • Yuan Song
Article
  • 19 Downloads

Abstract

Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen (Ar/H2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H2 plasma was higher than that with pure hydrogen or argon. The possible mechanism for this enhanced removal was discussed. The key working parameters for Ar/H2 plasma removal were determined, including the optimal vacuum pressure, gas mixing ratio, and source power. The optimal process was performed on a carbon-coated multilayer, and the reflectivity was recovered.

Keywords

Radio-frequency plasma X-ray irradiation Carbon contamination 

References

  1. 1.
    A. Dolgov, D. Lopaev, C. Lee et al., Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source. Appl. Surf. Sci. 353, 708–713 (2015).  https://doi.org/10.1016/j.apsusc.2015.06.079 CrossRefGoogle Scholar
  2. 2.
    H. Shin, J. Sporre, R. Raju et al., Reflectivity degradation of grazing-incident EUV mirrors by EUV exposure and carbon contamination. Microelectron. Eng. 86, 99–105 (2009).  https://doi.org/10.1016/j.mee.2008.10.009 CrossRefGoogle Scholar
  3. 3.
    H. Steffen, K. Manuel et al., Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320 (2015).  https://doi.org/10.1038/lsa.2015.93 CrossRefGoogle Scholar
  4. 4.
    M. Chen, J. Luo, F. Li et al., Tunable synchrotron-like radiation from centimeter scale plasma channels. Light Sci. Appl. 5, e16015 (2016).  https://doi.org/10.1038/lsa.2016.15 CrossRefGoogle Scholar
  5. 5.
    M. Xin, K. Safak, Y. Peng et al., Attosecond precision multi-kilometer laser-microwave network. Light Sci. Appl. 6, e16187 (2017).  https://doi.org/10.1038/lsa.2016.187 CrossRefGoogle Scholar
  6. 6.
    S. Graham, C. Steinhaus, W. Clift, et al., Atomic hydrogen cleaning of EUV multilayer optics, in Proceedings of SPIEThe International Society for Optical Engineering, vol. 5037 (2003)Google Scholar
  7. 7.
    J. Chen, E. Louis, R. Harmsen et al., In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers. Appl. Surf. Sci. 258, 7–12 (2011).  https://doi.org/10.1016/j.apsusc.2011.07.121 CrossRefGoogle Scholar
  8. 8.
    E. Pellegrin, I. Šics, J. Reyes-Herrera et al., Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning. J. Synchrotron Radiat. 21, 300 (2014).  https://doi.org/10.1107/S1600577513032402 CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, H. Luo, Z. Guo et al., Cleaning of carbon-contaminated optics using O2/Ar plasma. Nucl. Sci. Tech. 28, 127 (2017).  https://doi.org/10.1007/s41365-017-0274-z CrossRefGoogle Scholar
  10. 10.
    M. Cuxart, J. Reyes-Herrera, I. Šics et al., Remote plasma cleaning of optical surfaces: cleaning rates of different carbon allotropes as a function of RF powers and distances. Appl. Surf. Sci. 362, 448 (2016).  https://doi.org/10.1016/j.apsusc.2015.11.117 CrossRefGoogle Scholar
  11. 11.
    T. Akio, K. Takashi, T. Hirokazu et al., In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region. J. Synchrotron Radiat. 22, 1359–1363 (2015).  https://doi.org/10.1107/s1600577515015040 CrossRefGoogle Scholar
  12. 12.
    S. Pradhan, M. Jeevitha, S. Singh, Plasma cleaning of old Indian coin in H2–Ar atmosphere. Appl. Surf. Sci. 357, 445 (2015).  https://doi.org/10.1016/j.apsusc.2015.09.026 CrossRefGoogle Scholar
  13. 13.
    H. Barshilia, A. Ananth, J. Khan et al., Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates. Vacuum 86, 1165–1173 (2012).  https://doi.org/10.1016/j.vacuum.2011.10.028 CrossRefGoogle Scholar
  14. 14.
    E. Malykhin, D. Lopaev, A. Rakhimov et al., Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations. Mosc. Univ. Phys. Bull. 66, 184–189 (2011).  https://doi.org/10.3103/S0027134911020111 CrossRefGoogle Scholar
  15. 15.
    G.J. Gorin, US 6263831 B1, 2001Google Scholar
  16. 16.
    G.J. Gorin, US 7015415 B2, 2006Google Scholar
  17. 17.
    C. García-Rosales, Erosion processes in plasma-wall interactions. J. Nucl. Mater. 211, 202–214 (1994).  https://doi.org/10.1016/0022-3115(94)90348-4 CrossRefGoogle Scholar
  18. 18.
    R. Clark, D. Reiter (eds.), Nuclear Fusion Research: Understanding Plasma-Surface Interactions (Springer, Berlin, 2005), pp. 203–206Google Scholar
  19. 19.
    J. Bohdansky, A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nucl. Instrum. Methods Phys. Res. Sect. B 2.1–3, 587–591 (1984).  https://doi.org/10.1016/0168-583x(84)90271-4 CrossRefGoogle Scholar
  20. 20.
    W. Eckstein, Computer Simulation of Ion-Solid Interaction, Springer Series in Material Science (Springer, Berlin, 1991), p. 207CrossRefGoogle Scholar
  21. 21.
    N. Chkhalo, M. Mikhailenko, A. Mil’kov et al., Effect of ion beam etching on the surface roughness of bare and silicon covered beryllium films. Surf. Coat. Technol. 311, 351–356 (2017).  https://doi.org/10.1016/j.surfcoat.2017.01.023 CrossRefGoogle Scholar
  22. 22.
    D. Sidorov, N. Chkhalo, M. Mikhailenko et al., Sputtering of carbon using hydrogen ion beams with energies of 60–800 eV. Nucl. Instrum. Methods B 387, 73–76 (2016).  https://doi.org/10.1016/j.nimb.2016.10.007 CrossRefGoogle Scholar
  23. 23.
    J. Coburn, H. Winters, Ion- and electron-assisted gas-surface chemistry—an important effect in plasma etching. J. Appl. Phys. 50, 3189 (1979).  https://doi.org/10.1063/1.326355 CrossRefGoogle Scholar
  24. 24.
    M. Lieberman, A. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, Hoboken, 2005), pp. 303–304CrossRefGoogle Scholar
  25. 25.
    M. Wittmann, J. Küppers, A model of hydrogen impact induced chemical erosion of carbon based on elementary reaction steps. J. Nucl. Mater. 227, 186–194 (1996).  https://doi.org/10.1016/0022-3115(95)00150-6 CrossRefGoogle Scholar
  26. 26.
    A. Bogaerts, R. Gijbels, Hybrid Monte Carlo-fluid modeling network for an argon/hydrogen direct current glow discharge. Spectrochim. Acta Part B 57, 1071–1099 (2002).  https://doi.org/10.1016/S0584-8547(02)00047-2 CrossRefGoogle Scholar
  27. 27.
    A. Bogaerts, R. Gijbels, Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations. J. Anal. At. Spectrom. 15, 441–449 (2000).  https://doi.org/10.1039/A909779A CrossRefGoogle Scholar
  28. 28.
    Q. Zheng, X. Wang, S. Gao, Adsorption equilibrium of hydrogen on graphene sheets and activated carbon. Cryogenics 61, 143–148 (2014).  https://doi.org/10.1016/j.cryogenics.2014.01.005 CrossRefGoogle Scholar
  29. 29.
    S. Bajt, M. Prasciolu, H. Fleckenstein et al., X-ray focusing with efficient high-NA multilayer Laue lenses. Light Sci. Appl. 7, 17162 (2018).  https://doi.org/10.1038/lsa.2017.162 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Optics, Changchun Institute of Optics and Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations