Simulation study of the dose and energy responses of FNTD personal neutron dosimetry

  • Yi-Hang WangEmail author
  • Qiang Li
  • Li Chen
  • Yong-Gang Yuan
  • Tai-Ping Peng


The objective of this work was to use the Geant4 toolkit to perform simulation studies on the personal dose response of fluorescent nuclear track detectors (FNTDs). The entire structure of the FNTD response can be designed, and the detector’s energy and dose responses can be optimized in a broad energy range (0.01 eV–20 MeV). In general, the detectors used 6LiF and CH2 converters that have high energy and high dose response at neutron energies lower than 10 eV and greater than 1 MeV, respectively. The method of least squares was used to optimize the dose response of H*(10) and the energy response corresponding to Rtotal. The values of the optimized response of H*(10) lie between 0.8 and 1.4, corresponding to the energy ranges 0.01 eV–70 keV and 4–14 MeV, respectively. This occupies nearly eight out of the nine orders of the total energy range. Even though the optimized response of Rtotal is constrained between 0.89 and 1.1 in the energy range of 0.01 eV–20 MeV, it is suitable for obtaining the broad neutron spectrum of fluence with good accuracy.


FNTD Geant4 Al2O3/C, Mg Personal neutron dose 


  1. 1.
    M.G. Akselrod, M.S. Akselrod, E.R. Benton et al., A novel Al2O3 fluorescent nuclear track detector for heavy charged particles and neutrons. Nucl. Instrum. Method B 247, 295–306 (2006). CrossRefGoogle Scholar
  2. 2.
    M.S. Akselrod, R.C. Yoder, M.G. Akselrod, Confocal fluorescent imaging of tracks from heavy charged particles utilizing new Al2O3:C, Mg crystals, Mg crystals. Radiat. Prot. Dosim. 119, 357–362 (2006). CrossRefGoogle Scholar
  3. 3.
    M.S. Akselrod, A.E. Akselrod, New Al2O3:C, Mg crystals for radio photo luminescent dosimetry and optical imaging. Radiat. Prot. Dosim. 119, 218–221 (2006). CrossRefGoogle Scholar
  4. 4.
    O.S. Gabriel, A.F. Felisberto, H.M. Conor et al., Nanoscale measurements of proton tracks using fluorescent nuclear track detectors. Med. Phys. 43, 2485–2490 (2016). CrossRefGoogle Scholar
  5. 5.
    G.J. Sykora, M. Salasky, M.S. Akselrod, Properties of novel fluorescent nuclear track detectors for use in passive neutron dosimetry. Radiat. Meas. 43, 1017–1023 (2008). CrossRefGoogle Scholar
  6. 6.
    M.S. Akselrod, V.V. Fomenko, J.A. Bartz et al., Automatic neutron dosimetry system based on fluorescent nuclear track detector technology. Radiat. Prot. Dosim. 161, 86–91 (2014). CrossRefGoogle Scholar
  7. 7.
    F. d’Ericco, Radiation dosimetry and spectroscopy with superheated emulsions. Nucl. Instrum. Methods B. 184, 229–254 (2001). CrossRefGoogle Scholar
  8. 8.
    E.G. Yukihara, R. Gaza, S.W.S. McKeever et al., Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C. Radiat. Meas. 38, 59–70 (2004). CrossRefGoogle Scholar
  9. 9.
    J.C.R. Mittani, A.A.R. Silva, F. Vanhavere et al., Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al2O3:C. Nucl. Instrum. Methods B. 260, 663–671 (2007). CrossRefGoogle Scholar
  10. 10.
    G.J. Sykora, M.S. Akselrod, E.R. Benton et al., Spectroscopic properties of novel fluorescent nuclear track detectors for high and low LET charged particles. Radiat. Meas. 43, 422–426 (2008). CrossRefGoogle Scholar
  11. 11.
    J.M. Osinga, M.S. Akselrod, R. Herrmann et al., High-accuracy fluence determination in ion beams using fluorescent nuclear track detectors. Radiat. Meas. 56, 294–298 (2013). CrossRefGoogle Scholar
  12. 12.
    J.M. Osinga, I. Ambrozova, K.P. Brabcova et al., Single track coincidence measurements of fluorescent and plastic nuclear track detectors in therapeutic carbon beams. J. Instrum. 9, 4–13 (2014). CrossRefGoogle Scholar
  13. 13.
    M.S. Akselrod, G.J. Sykora, Fluorescent nuclear track detector technology—a new way to do passive solid state dosimetry. Radiat. Meas. 46, 1671–1679 (2011). CrossRefGoogle Scholar
  14. 14.
    M.S. Akselrod, V.V. Fomenko, J.A. Bartz et al., FNTD radiation dosimetry system enhanced with dual-color wide-field imaging. Radiat. Meas. 71, 166–173 (2014). CrossRefGoogle Scholar
  15. 15.
    S. Greilich, J.M. Osinga, M. Niklas et al., Fluorescent nuclear track detectors as a tool for ion-beam therapy research. Radiat. Meas. 56, 267–272 (2013). CrossRefGoogle Scholar
  16. 16.
    M.S. Akselrod, Fundamentals of materials, techniques, and instrumentation for OSL and FNTD dosimetry. AIP. Conf. Proc. 1345, 274–302 (2011). CrossRefGoogle Scholar
  17. 17.
    G.J. Sykora, M.S. Akselrod, M. Salasky et al., Novel Al2O3:C, Mg fluorescent nuclear track detectors for passive neutron dosimetry. Radiat. Prot. Dosim. 126, 278–283 (2007). CrossRefGoogle Scholar
  18. 18.
    G.J. Sykora, M.S. Akselrod, F. Vanhavere, Performance of fluorescence nuclear track detectors in mono-energetic and broad spectrum neutron fields. Radiat. Meas. 44, 988–991 (2009). CrossRefGoogle Scholar
  19. 19.
    S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. 506, 250–303 (2003). CrossRefGoogle Scholar
  20. 20.
    J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE. Trans. Nucl. Sci. 53, 270–278 (2006). CrossRefGoogle Scholar
  21. 21.
    J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geants. Nucl. Instrum. Methods Phys. Res. 835, 186–225 (2016). CrossRefGoogle Scholar
  22. 22.
    M.S. Akselrod, A.E. Akselrod, S.S. Orlov et al., Fluorescent aluminum oxide crystals for volumetric optical data storage and imaging application. J. Fluoresc. 13, 503–511 (2003). CrossRefGoogle Scholar
  23. 23.
    M.S. Akselrod, S.S. Orlov, G.M. Akselrod, Bit-wise volumetric optical memory utilizing two-photon absorption in aluminum oxide medium. Jpn. J. Appl. Phys. 43, 4908–4911 (2004). CrossRefGoogle Scholar
  24. 24.
    F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, vol. 27 (Wiley, New York, 1986), pp. 111–123. CrossRefGoogle Scholar
  25. 25.
    G.J. Sykora, M.S. Akselrod, Novel fluorescent nuclear track detector technology for mixed neutron–gamma fields. Radiat. Meas. 45, 594–598 (2010). CrossRefGoogle Scholar
  26. 26.
    D.F. Tian, W.L. Sun, Excitation Functions in Neutron-Induced Reactions (National Defense Industry Press, Beijing, 2006). (in Chinese) Google Scholar
  27. 27.
    ICRP, ICRP Publication 74[M] (Pergamon Press, Oxford, 1996)Google Scholar
  28. 28.
    J. Wang, X.L. Lu, Y. Yan et al., Study of an unfolding algorithm for D–T neutron energy spectra measurement using a recoil proton method. Chin. Phys. C. 39, 59–63 (2015). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yi-Hang Wang
    • 1
    Email author
  • Qiang Li
    • 2
  • Li Chen
    • 2
  • Yong-Gang Yuan
    • 1
  • Tai-Ping Peng
    • 1
  1. 1.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina
  2. 2.China Institution for Radiation ProtectionTaiyuanChina

Personalised recommendations