Advertisement

Using monochromatic light to measure attenuation length of liquid scintillator solvent LAB

  • Rui Zhang
  • De-Wen Cao
  • Chang-Wei Loh
  • You-Hang Liu
  • Fang-Liang Wu
  • Jia-Liang Zhang
  • Ming QiEmail author
Article
  • 17 Downloads

Abstract

Linear alkylbenzene (LAB) will be used as solvent for the liquid scintillator in the central detector of Jiangmen Underground Neutrino Observatory. The sheer size of the detector imposes significant challenges and the necessity to further improve the optical transparency of high-quality LAB. In order to study high optical transparencies, we continuously improve our measurement setup and use monochromatic light to measure the attenuation lengths of LAB samples. Moreover, the effects of organic impurities on LAB samples are studied to understand their interaction mechanisms and further improve the optical transparency of LAB.

Keywords

Neutrino detector Linear alkylbenzene Light absorption 

Notes

Acknowledgements

We are grateful for the warm help and enlightening insights from Yi-Fang Wang, Jun Cao, Sen Qian, Li Zhou, Tao Hu, Ya-Yun Ding, Zhe Ning, Na Zhu, Guang-You Yu, Hai-Bo Yang, and Ai-Zhong Huang.

References

  1. 1.
    F. An, G. An, Q. An et al., Neutrino physics with JUNO. J. Phys. G 43, 030401 (2016).  https://doi.org/10.1088/0954-3899/43/3/030401 CrossRefGoogle Scholar
  2. 2.
    L. Zhan, Y.F. Wang, J. Cao et al., Determination of the neutrino mass hierarchy at an intermediate baseline. Phys. Rev. D 78, 111103(R) (2008).  https://doi.org/10.1103/PhysRevD.78.111103 CrossRefGoogle Scholar
  3. 3.
    L. Zhan, Y.F. Wang, J. Cao et al., Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 79, 073007 (2009).  https://doi.org/10.1103/PhysRevD.79.073007 CrossRefGoogle Scholar
  4. 4.
    Y.F. Li, J. Cao, Y.F. Wang et al., Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 88, 013008 (2013).  https://doi.org/10.1103/PhysRevD.88.013008 CrossRefGoogle Scholar
  5. 5.
    F.P. An, A.B. Balantekin, H.R. Band et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay. Phys. Rev. Lett. 112, 061801 (2014).  https://doi.org/10.1103/PhysRevLett.112.061801 CrossRefGoogle Scholar
  6. 6.
    F.P. An, A.B. Balantekin, H.R. Band et al., Search for a light sterile neutrino at Daya bay. Phys. Rev. Lett. 113, 141802 (2014).  https://doi.org/10.1103/PhysRevLett.113.141802 CrossRefGoogle Scholar
  7. 7.
    F.P. An, A.B. Balantekin, H.R. Band et al., New measurement of antineutrino oscillation with the full detector configuration at Daya Bay. Phys. Rev. Lett. 115, 111802 (2015).  https://doi.org/10.1103/PhysRevLett.115.111802 CrossRefGoogle Scholar
  8. 8.
    F.P. An, A.B. Balantekin, H.R. Band et al., Measurement of the reactor antineutrino flux and spectrum at Daya Bay. Phys. Rev. Lett. 116, 061801 (2016).  https://doi.org/10.1103/PhysRevLett.116.061801 CrossRefGoogle Scholar
  9. 9.
    M.A. Schumaker, SNO+ collaboration, supernova detection with SNO+. Nucl. Phys. B 547, 229–232 (2012).  https://doi.org/10.1016/j.nuclphysbps.2012.09.184 CrossRefGoogle Scholar
  10. 10.
    J.K. Ahn, S. Chebotaryov, J.H. Choi et al., Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012).  https://doi.org/10.1103/PhysRevLett.108.191802 CrossRefGoogle Scholar
  11. 11.
    Y. Abe, C. Aberle, J.C. dos Anjos et al., Reactor electron antineutrino disappearance in the double CHOOZ experiment. Phys. Rev. D 86, 052008 (2012).  https://doi.org/10.1103/PhysRevD.86.052008 CrossRefGoogle Scholar
  12. 12.
    H. Yang, D. Cao, Z. Qian et al., Light attenuation length of high quality linear alkyl benzene as liquid scintillator solvent for the JUNO experiment. JINST 12, T11004 (2017).  https://doi.org/10.1088/1748-0221/12/11/T11004 CrossRefGoogle Scholar
  13. 13.
    P.W. Huang, P.Y. Li, Z.W. Fu et al., Study of attenuation length of linear alkyl benzene as LS solvent. JINST 5, P08007 (2010).  https://doi.org/10.1088/1748-0221/5/08/P08007 CrossRefGoogle Scholar
  14. 14.
    P.W. Huang, H.Y. Cao, M. Qi et al., Theoretical study of UV–Vis light absorption of some impurities in alkylbenzene type liquid scintillator solvents. Theor. Chem. Acc. 129, 229 (2011).  https://doi.org/10.1007/s00214-011-0926-8 CrossRefGoogle Scholar
  15. 15.
    F. Baldini, A. Giannetti, Optical chemical and biochemical sensors: new trends. Opt. Sens. Spectrosc. 5826, 485 (2005).  https://doi.org/10.1117/12.610653 CrossRefGoogle Scholar
  16. 16.
    IUPAC, Compendium of Chemical Terminology, 2nd edn. (Blackwell Scientific, Oxford, 1997).  https://doi.org/10.1351/goldbook
  17. 17.
    Z. Ning, S. Qian, Z. Fu et al., A data acquisition system based on general VME system in WinXP. Nucl. Tech. 33, 740 (2010). (in Chinese) Google Scholar
  18. 18.
    J. Goett, J. Napolitano, M. Yeh et al., Optical attenuation measurements in metal-loaded liquid scintillators with a long-pathlength photometer. Nucl. Instrum. Methods Phys. Res. A 637, 47–52 (2011).  https://doi.org/10.1016/j.nima.2011.02.051 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rui Zhang
    • 1
  • De-Wen Cao
    • 1
  • Chang-Wei Loh
    • 1
  • You-Hang Liu
    • 1
  • Fang-Liang Wu
    • 1
  • Jia-Liang Zhang
    • 1
  • Ming Qi
    • 1
    Email author
  1. 1.National Laboratory of Solid State Microstructures and School of PhysicsNanjing UniversityNanjingChina

Personalised recommendations