Advertisement

Cross-section measurement of (n,2n) reactions for Nd isotopes induced by 14 MeV neutrons

  • Qiang Wang
  • Bing-Jun Chen
  • Qian Zhang
  • Si-Min Cai
  • Chang-Lin Lan
  • Kai-Hong FangEmail author
Article
  • 10 Downloads

Abstract

Cross-sections of the (n,2n) reactions for neodymium (Nd) isotopes induced by 14 MeV neutrons were measured in this work by using the activation and relative methods. The measured cross-sections of the 150Nd(n,2n)149Nd, 148Nd(n,2n)147Nd, and 142Nd(n,2n)141Nd reactions were 1854 ± 81, 1789 ± 119, and 1559 ± 98 mb, respectively, at a neutron energy of 14.2 ± 0.2 MeV, and 1485 ± 74, 1726 ± 85, and 1670 ± 119 mb, respectively, at 14.9 ± 0.2 MeV. The results were compared with the experimental values from the reported literature, with the evaluated data from the ENDF/B-VII.1, CENDL-3.1, and JENDL-4.0 libraries, and with the curves calculated by the Talys-1.8 code.

Keywords

Cross-section Neodymium (n,2n) reaction Activation method 14 MeV neutron 

Notes

Acknowledgements

The authors would like to thank Prof. Murata at Osaka University, Japan, for the excellent support during the measurements.

References

  1. 1.
    E.T. Cheng, Radioactivity aspects of fusion reactors. Fusion Eng. Des. 10, 231–242 (1989).  https://doi.org/10.1016/0920-3796(89)90058-6 CrossRefGoogle Scholar
  2. 2.
    X.J. Sun, C.H. Pan, G.G. Yu et al., Pre-neutron-emission mass distribution for reaction 232Th(n,f) up to 60 MeV. Commun. Theor. Phys. 62, 711–716 (2014).  https://doi.org/10.1088/0253-6102/62/5/14 CrossRefGoogle Scholar
  3. 3.
    W.A. Metwally, S. El-Sayed, A. Ababneh et al., Flux measurements for a DD neutron generator using neutron activation analysis. Nucl. Sci. Tech. 29, 52 (2018).  https://doi.org/10.1007/s41365-018-0385-1 CrossRefGoogle Scholar
  4. 4.
    Z.Q. Chen, Recent progress in nuclear data measurement for ADS at IMP. Nucl. Sci. Tech. 28, 184 (2017).  https://doi.org/10.1007/s41365-017-0335-3 CrossRefGoogle Scholar
  5. 5.
    S. Zhang, Y.B. Nie, J. Ren et al., Benchmarking of JEFF-3.2, FENDL-3.0 and TENDL-2014 evaluated data for tungsten with 14.8 MeV neutrons. Nucl. Sci. Tech. 28, 27 (2017).  https://doi.org/10.1007/s41365-017-0192-0 CrossRefGoogle Scholar
  6. 6.
    R. Ogul, N. Buyukcizmeci, A. Ergun et al., Production of neutron-rich exotic nuclei in projectile fragmentation at Fermi energies. Nucl. Sci. Tech. 28, 18 (2017).  https://doi.org/10.1007/s41365-016-0175-6 CrossRefGoogle Scholar
  7. 7.
    Y.D. Song, H.L. Wei, C.W. Ma et al., Improved FRACS parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions. Nucl. Sci. Tech. 29, 96 (2018).  https://doi.org/10.1007/s41365-018-0439-4 CrossRefGoogle Scholar
  8. 8.
    R.A. Anderl, Y.D. Harker, F. Schmittroth, Neodymium, samarium and europium capture cross-section adjustments based on EBR-II integral measurements. No. CONF-791223-2. Idaho National Engineering Lab., Idaho Falls (USA); Hanford Engineering Development Lab., Richland, 1979Google Scholar
  9. 9.
    R.G. Wille, R.W. Fink, Activation cross-sections for 14.8 MeV neutrons and some new radioactive nuclides in the rare earth region. Phys. Rev. 118, 242 (1960).  https://doi.org/10.1103/PhysRev.118.242 CrossRefGoogle Scholar
  10. 10.
    L.A. Rayburn, 14.4 MeV (n,2n) cross-sections. Phys. Rev. 122, 168 (1961).  https://doi.org/10.1103/PhysRev.122.168 CrossRefGoogle Scholar
  11. 11.
    J.T. Grissom, D.R. Koehler, W.L. Alford, 141Nd and its production in the (n,2n) reaction. Phys. Rev. 142, 725 (1966).  https://doi.org/10.1103/PhysRev.142.725 CrossRefGoogle Scholar
  12. 12.
    W. Dilg, H. Vonach, G. Winkler et al., Messung von (n,2n) wirkungs-querschnitten an schweren kernen. Nucl. Phys. A 118, 9–16 (1968).  https://doi.org/10.1016/0375-9474(68)90182-6 CrossRefGoogle Scholar
  13. 13.
    P.R. Prasad, J.R. Rao, E. Kondaiah, Cross-sections for (n,2n), (n,α) and (n,p) reactions in rare-earth isotopes at 14.2 MeV. Nucl. Phys. A 125, 57–64 (1969).  https://doi.org/10.1016/0375-9474(69)90828-8 CrossRefGoogle Scholar
  14. 14.
    A. Bari, 14.8 MeV neutron activation cross-sections of rubidium, strontium, zirconium, niobium, and rare-earth nuclides. Dissertation Abstracts B (Sciences), 32, 5091 (1972)Google Scholar
  15. 15.
    S.M. Qaim, Total (n,2n) cross-sections and isomeric cross-section ratios at 14.7 MeV in the region of rare earths. Nucl. Phys. A 224, 319–330 (1974).  https://doi.org/10.1016/0375-9474(74)90690-3 CrossRefGoogle Scholar
  16. 16.
    S.L. Sothras, G.N. Salaita, (n,2n) cross-sections at 14.8 MeV on some closed shell nuclides. J. Inorg. Nucl. Chem. 40, 585–587 (1978).  https://doi.org/10.1016/0022-1902(78)80371-6 CrossRefGoogle Scholar
  17. 17.
    S. Gmuca, I. Ribansky, Neutron activation cross-sections on Nd isotopes at 14.8 MeV. Acta Phys. Slovaca 33, 9–23 (1983)Google Scholar
  18. 18.
    A.J. Do, J. Dresler, U. Garuska et al., The cross-sections of the (n,2n) reactions on 134Ba, 142Nd, 150Nd and 144Sm. J. Phys. G: Nucl. Phys. 10, 91 (1984).  https://doi.org/10.1088/0305-4616/10/1/014 CrossRefGoogle Scholar
  19. 19.
    J. Frehaut, A. Bertin, R. Bois et al., Status of (n, 2n) cross-section measurements at Bruyeres-le-Chatel. Report to the I.N.D.C., 1, 399, 1980Google Scholar
  20. 20.
    N.L. Das, C.V.S. Rao, B.V.T. Rao et al., Pre-equilibrium effects in (n,2n) reactions at 14.2 MeV. Pramana 17, 99–104 (1981).  https://doi.org/10.1007/BF02872041 CrossRefGoogle Scholar
  21. 21.
    M.P. Menon, M.Y. Cuypers, 14.5 MeV neutron activation cross-section for some of the rare-earth nuclides and their relation to the nuclear shell structure. Phys. Rev. 156, 1340 (1967).  https://doi.org/10.1103/PhysRev.156.1340 CrossRefGoogle Scholar
  22. 22.
    Y. Kasugai, Y. Ikeda, and Y. Uno, Activation cross-section measurement for La, Ce, Pr, Nd, Gd, Dy and Er isotopes by 14 MeV neutrons. Technical report, 1997Google Scholar
  23. 23.
    M. Bormann, H.H. Bissem, E. Magiera et al., Total cross-sections and isomeric cross-section ratios for (n,2n) reactions in the energy region 12–18 MeV. Nucl. Phys. A 157, 481–496 (1970).  https://doi.org/10.1016/0375-9474(70)90228-9 CrossRefGoogle Scholar
  24. 24.
    I. Kumabe, E. Kotake, F. Nagahama, Activation cross-sections for (n,2n) reaction on neodymium, samarium, gadolinium and ytterbium at 14.6 MeV. J. Nucl. Sci. Technol. 14, 319–326 (1977).  https://doi.org/10.1080/18811248.1977.9730766 CrossRefGoogle Scholar
  25. 25.
    Z.S. Pu, G.C. Wei, X.Z. Kong, Cross-section measurements for (n,2n) reactions on neodymium isotopes at the neutron energies of 13.5, 14.1 and 14.6 MeV. High Energy Phys. Nucl. 28, 958–960 (2004).  https://doi.org/10.1023/B:JRNC.0000027073.70271.99 CrossRefGoogle Scholar
  26. 26.
    J.H. Luo, L. An, L. Jiang et al., Cross-sections for D-T neutron interaction with neodymium isotopes. Radiat. Phys. Chem. 109, 63–69 (2015).  https://doi.org/10.1016/j.radphyschem.2014.12.014 CrossRefGoogle Scholar
  27. 27.
    Q. Wang, J.X. Zou, Z.H. Wang et al., Fission cross-section for the 232Th(n, f)138Cs reaction induced by neutrons around 14 MeV. Eur. Phys. J. A 50, 164 (2014).  https://doi.org/10.1140/epja/i2014-14164-0 CrossRefGoogle Scholar
  28. 28.
    C.L. Lan, Y.J. Qiu, Q. Wang et al., Measurement of fission cross-section for 232Th(n,f)131ZX (Z = 50,51,52,53) reaction induced by neutrons around 14 MeV. Eur. Phys. J. A 53, 131 (2017).  https://doi.org/10.1140/epja/i2017-12318-2 CrossRefGoogle Scholar
  29. 29.
    C.L. Lan, B.L. Xie, K. Zhang et al., Measurement of 232Th (n,2n)231Th reaction cross sections at neutron energies of 14.1 MeV and 14.8 MeV using neutron activation method. Nucl. Sci. Tech. 26, 060501 (2015).  https://doi.org/10.13538/j.1001-8042/nst.26.060501 CrossRefGoogle Scholar
  30. 30.
    C.L. Lan, M. Peng, Y. Zhang et al., Geant4 simulation of 238U(n, f) reaction induced by D-T neutron source. Nucl. Sci. Tech. 28, 8 (2017).  https://doi.org/10.1007/s41365-016-0158-7 CrossRefGoogle Scholar
  31. 31.
    Q. Wang, T. Liu, Y.J. Qiu et al., Measurement of the cross sections for 238U(n,γ)239U reaction in the energy range of 14.1–14.8 MeV using neutron activation method. Radiat. Phys. Chem. 152, 125–128 (2018).  https://doi.org/10.1016/j.radphyschem.2018.08.013 CrossRefGoogle Scholar
  32. 32.
    K.H. Fang, S.W. Xu, C.L. Lan et al., Cross-section measurement for the reactions producing short-lived nuclei induced by neutrons around 14 MeV. Appl. Radiat. Isot. 66, 1104–1107 (2008).  https://doi.org/10.1016/j.apradiso.2007.10.011 CrossRefGoogle Scholar
  33. 33.
    V.E. Lewis, K.J. Zieba, A transfer standard for d + t neutron fluence and energy. Nucl. Instrum. Methods 174, 141–144 (1980).  https://doi.org/10.1016/0029-554X(80)90422-X CrossRefGoogle Scholar
  34. 34.
    K.A. Toukan, K. Debus, F. Käppeler et al., Stellar neutron capture cross-sections of Nd, Pm, and Sm isotopes. Phys. Rev. C 51, 1540 (1995).  https://doi.org/10.1103/PhysRevC.51.1540 CrossRefGoogle Scholar
  35. 35.
    Q.Q. Cheng, Y.Z. Yuan, C.W. Ma et al., Gamma measurement based on CMOS sensor and ARM microcontroller. Nucl. Sci. Tech. 28, 45–49 (2017).  https://doi.org/10.1007/s41365-017-0276-x CrossRefGoogle Scholar
  36. 36.
    R.B. Firestone, V.S. Shirley et al. Table of Isotopes CD-ROM Edition. Version 1.0, 1996Google Scholar
  37. 37.
    K.H. Fang, X.S. Xu, C.L. Lan et al., Cross-section measurement for Ni(n, x)58(m + g)Co, Ni(n, x)60mCo, Ni(n, x)61Co and Ni(n, x)62mCo reactions induced by neutrons around 14 MeV. Chin. Phys. C 32, 251–253 (2008).  https://doi.org/10.1088/1674-1137/32/4/002 CrossRefGoogle Scholar
  38. 38.
    X.Z. Kong, Y.C. Wang, J.K. Yang, Cross-sections for (n,2n), (n,p) and (n,α) reactions on rare-earth isotopes at 14.7 MeV. Appl. Radiat. Isot. 49, 1529–1532 (1998).  https://doi.org/10.1016/S0969-8043(98)00018-9 CrossRefGoogle Scholar
  39. 39.
    M.B. Chadwick, M. Herman, P. Obložinský et al., ENDF/B-VII.1: nuclear data for science and technology: cross-sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011).  https://doi.org/10.1016/j.nds.2011.11.002 CrossRefGoogle Scholar
  40. 40.
    Z.G. Ge, Z.X. Zhao, H.H. Xia et al., CENDL-3.1: the updated version of Chinese evaluated nuclear data library. J. Korean Phys. Soc. 59, 1052–1056 (2011).  https://doi.org/10.3938/jkps.59.1052 CrossRefGoogle Scholar
  41. 41.
    K. Shibata, O. Iwamoto, T. Nakagawa et al., JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48, 1–30 (2011).  https://doi.org/10.1080/18811248.2011.9711675 CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Qiang Wang
    • 1
    • 2
  • Bing-Jun Chen
    • 1
  • Qian Zhang
    • 1
  • Si-Min Cai
    • 1
  • Chang-Lin Lan
    • 1
    • 2
  • Kai-Hong Fang
    • 1
    • 2
    Email author
  1. 1.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina
  2. 2.Engineering Research Center for Neutron Application Technology, Ministry of EducationLanzhou UniversityLanzhouChina

Personalised recommendations