Advertisement

Theoretical calculation and evaluation of n + 240,242,244Pu reactions

  • Hai-Rui Guo
  • Yin-Lu HanEmail author
  • Chong-Hai Cai
Article
  • 31 Downloads

Abstract

The nuclear data of \({\text{n}}\,+\,^{240,242,244}\)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is used to calculate the total, nonelastic, shape elastic cross sections, shape elastic scattering angular distributions, and transmission coefficients. The distorted-wave Born approximation is applied to calculate the direct inelastic scatterings to the discrete excited states. The nuclear reaction statistical models and fission theory are applied to describe neutron, proton, deuteron, triton, helium-3, alpha and \(\gamma\) emissions, and fission consistently. The results thus obtained are compared with experimental data and the evaluated data obtained from ENDF/B-VII.1 and JENDL-4.0.

Keywords

n + 240,242,244Pu reactions Theoretical calculation of nuclear reaction Nuclear data for E ≤ 200 MeV 

References

  1. 1.
    C.D. Bowman, E.D. Arthur, P.W. Lisowski et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instrum. Meth. Phys. Res. A 320, 336–367 (1992).  https://doi.org/10.1016/0168-9002(92)90795-6 CrossRefGoogle Scholar
  2. 2.
    A.J. Koning, J.-P. Delaroche, O. Bersillon, Nuclear data for accelerator driven systems: nuclear models, experiments and data libraries. Nucl. Instrum. Meth. Phys. Res. A 414, 49–67 (1998).  https://doi.org/10.1016/S0168-9002(98)00528-2 CrossRefGoogle Scholar
  3. 3.
    H. Guo, Y. Han, T. Ye et al., Theoretical analysis and evaluation for neutron-induced reaction on \(^{239}\)Pu. Ann. Nucl. Energy 108, 151–162 (2017).  https://doi.org/10.1016/j.anucene.2017.04.043 CrossRefGoogle Scholar
  4. 4.
    K. Shibata, O. Iwamoto, T. Nakagawa et al., JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48, 1–30 (2011).  https://doi.org/10.1080/18811248.2011.9711675 CrossRefGoogle Scholar
  5. 5.
    M.B. Chadwick, M. Herman, P. Oblozinsky et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011).  https://doi.org/10.1016/j.nds.2011.11.002 CrossRefGoogle Scholar
  6. 6.
    Y. Han, Y. Xu, H. Liang et al., Global phenomenological optical model potential of nucleon-actinide reaction for energies up to 300 MeV. Phys. Rev. C 81, 024616 (2010).  https://doi.org/10.1103/PhysRevC.81.024616 CrossRefGoogle Scholar
  7. 7.
    P.D. Kunz, Distorted Wave Code DWUCK4 (University of Colorado, Denver, 1994)Google Scholar
  8. 8.
    J. Zhang, A unified Hauser-Feshbach and exciton model for calculating double-differential cross sections of neutron-induced reactions below 20 MeV. Nucl. Sci. Eng. 114, 55–63 (1993).  https://doi.org/10.13182/NSE93-3 CrossRefGoogle Scholar
  9. 9.
    W. Dilg, W. Schantl, H. Vonach, Level density parameters for the back-shifted fermi gas model in the mass range 40\(<\)A\(<\)250. Nucl. Phys. A 217, 269–298 (1973).  https://doi.org/10.1016/0375-9474(73)90196-6 CrossRefGoogle Scholar
  10. 10.
    A. Iwamoto, K. Harada, Mechanism of cluster emission in nucleon-induced preequilibrium reactions. Phys. Rev. C 26, 1821–1834 (1982).  https://doi.org/10.1103/PhysRevC.26.1821 CrossRefGoogle Scholar
  11. 11.
    J. Zhang, S. Yan, C. Wang, The pick-up mechanism in composite particle emission processes. Z. Phys. A 344, 251–258 (1992).  https://doi.org/10.1007/BF01303018 CrossRefGoogle Scholar
  12. 12.
    A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Phenomenological description of the energy dependence of the level density parameter. Sov. J. Nucl. Phys. 21, 255 (1975)Google Scholar
  13. 13.
    Q. Shen et al., Monte-Carlo calculations of nucleon emitted and energy deposition in cylindrical targets induced by intermediate energy protons, in The 2nd international conference on accelerator-driven transmutation technologies and applications, Kalmar, Sweden (1997) p. 686Google Scholar
  14. 14.
    C. Kalbach, F.M. Mann, Phenomenology of continuum angular distributions. I. Systematics and parametrization. Phys. Rev. C 23, 112–123 (1981).  https://doi.org/10.1103/PhysRevC.23.112 CrossRefGoogle Scholar
  15. 15.
    C. Kalbach, Systematics of continuum angular distributions: Extensions to higher energies. Phys. Rev. C 37, 2350–2370 (1988).  https://doi.org/10.1103/PhysRevC.37.2350 CrossRefGoogle Scholar
  16. 16.
    J. Zhang, UNF code for fast neutron reaction data calculations. Nucl. Sci. Eng. 142, 207–219 (2002).  https://doi.org/10.13182/NSE02-02 CrossRefGoogle Scholar
  17. 17.
    C. Cai, MEND: a program for calculating the complete set of nuclear data of medium-heavy nuclei in a medium-low energy region. Nucl. Sci. Eng. 153, 93 (2006).  https://doi.org/10.13182/NSE05-06CCA CrossRefGoogle Scholar
  18. 18.
    Z. Wu, H. Liang, Y. Han, Theoretical calculations and evaluations of n+\(^{23}\)Na reaction. Nucl. Sci. Tech. 27, 102 (2016).  https://doi.org/10.1007/s41365-016-0092-8 CrossRefGoogle Scholar
  19. 19.
    Y. Han, Y. Shi, Q. Shen, Deuteron global optical model potential for energies up to 200 MeV. Phys. Rev. C 74, 044615 (2006).  https://doi.org/10.1103/PhysRevC.74.044615 CrossRefGoogle Scholar
  20. 20.
    Y. Xu, H. Guo, Y. Han et al., Applicability of the systematic helium-3 potential for triton-nucleus reactions. Int. J. Mod. Phys. E 24, 1550005 (2015).  https://doi.org/10.1142/S0218301315500056 CrossRefGoogle Scholar
  21. 21.
    Y. Xu, H. Guo, Y. Han et al., Helium-3 global optical model potential with energies below 250 MeV. Sci. China Phys. Mech. Astron. 54, 2005 (2011).  https://doi.org/10.1007/s11433-011-4488-5 CrossRefGoogle Scholar
  22. 22.
    X. Su, Y. Han, Global optical model potential for alpha projectile. Int. J. Mod. Phys. E 24, 1550092 (2015).  https://doi.org/10.1142/S0218301315500925 CrossRefGoogle Scholar
  23. 23.
    A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446–1496 (1965).  https://doi.org/10.1139/p65-139 CrossRefGoogle Scholar
  24. 24.
    N. Bohr, J.A. Wheeler, The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939).  https://doi.org/10.1103/PhysRev.56.426 CrossRefzbMATHGoogle Scholar
  25. 25.
    D.L. Hill, J.A. Wheeler, Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102–1145 (1953).  https://doi.org/10.1103/PhysRev.89.1102 CrossRefzbMATHGoogle Scholar
  26. 26.
    D.G. Madland, J.R. Nix, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities. Nucl. Sci. Eng. 81, 213–271 (1982).  https://doi.org/10.13182/NSE82-5 CrossRefGoogle Scholar
  27. 27.
    A.B. Smith, J.F. Whalen, P. Lambropoulos, Fast neutron total and scattering cross sections of plutonium-240. Nucl. Sci. Eng. 47, 19–28 (1972).  https://doi.org/10.13182/NSE72-A28417 CrossRefGoogle Scholar
  28. 28.
    W.P. Poenitz, J.F. Whalen, A.B. Smith, Total neutron cross sections of heavy nuclei. Nucl. Sci. Eng. 78, 333–341 (1981).  https://doi.org/10.13182/NSE81-A21367 CrossRefGoogle Scholar
  29. 29.
    W. P. Poenitz, J. F. Whalen, Neutron total cross section measurements in the energy region from 47 keV to 20 MeV. ANL-NDM-80 (1983)Google Scholar
  30. 30.
    A. B. Smith, P. T. Guenther, On neutron inelastic-scattering cross sections of \(^{232}\)Th, \(^{233}\)U, \(^{235}\)U, \(^{238}\)U, \(^{239}\)Pu and \(^{240}\)Pu. ANL-NDM-63 (1982)Google Scholar
  31. 31.
    R.W. Hockenbury, W.R. Moyer, R.C. Block, Neutron Capture, Fission, and Total Cross Sections of \(^{240}\)Pu from 20 eV to 30 keV. Nucl. Sci. Eng. 49, 153–161 (1972).  https://doi.org/10.13182/NSE72-A35503 CrossRefGoogle Scholar
  32. 32.
    F. Tovesson, T.S. Hill, M. Mocko et al., Neutron induced fission of \(^{240,242}\)Pu from 1 eV to 200 MeV. Phys. Rev. C 79, 014613 (2009).  https://doi.org/10.1103/PhysRevC.79.014613 CrossRefGoogle Scholar
  33. 33.
    A.B. Laptev, AYu. Donets, V.N. Dushin et al., Neutron-induced fission cross sections of \(^{240}\)Pu, \(^{243}\)Am, and \(^{Nat}\)W in the energy range 1–200 MeV, in Proceedings of International Conference Nuclear Data for Science and Technology, Santa Fe (2004), pp. 865–869Google Scholar
  34. 34.
    A. V. Fomichev, V.N. Dushin, S.M. Soloviev et al., Neutron induced fission cross sections For \(^{240}\)Pu, \(^{243}\)Am, \(^{209}\)Bi, \(^{nat}\)W measured relative to \(^{235}\)U in the energy range 1-350 MeV. RI-262 (2004)Google Scholar
  35. 35.
    J.W. Behrens, R.S. Newbury, J.W. Magana, Measurements of the neutron-induced fission cross sections of \(^{240}\)Pu, \(^{242}\)Pu, and \(^{244}\)Pu relative to \(^{235}\)U from 0.1 to 30 MeV. Nucl. Sci. Eng. 66, 433–441 (1978).  https://doi.org/10.13182/NSE78-A27227 CrossRefGoogle Scholar
  36. 36.
    P. Staples, K. Morley, Neutron-induced fission cross section ratios for \(^{239}\)Pu, \(^{240}\)Pu, \(^{242}\)Pu, and \(^{244}\)Pu Relative to \(^{235}\)U from 0.5 to 400 MeV. Nucl. Sci. Eng. 129, 149–163 (1998).  https://doi.org/10.13182/NSE98-A1969 CrossRefGoogle Scholar
  37. 37.
    M. V. Savin, Yu.A. Khokhlov, Yu.S. Zamjatnin et al., The average number of prompt neutrons in fast neutron induced fission of \(^{235}\)U, \(^{239}\)Pu and \(^{240}\)Pu, in Nuclear Data for Reactors Conference, 2, Helsinki (1970), p. 157Google Scholar
  38. 38.
    J. Frehaut, G. Mosinski, R. Bois et al., Measurement of the average number, nu-bar, of the prompt neutrons emitted in the \(^{240}\)Pu and \(^{241}\)Pu fission induced by neutrons of energy between 1.5 and 15 MeV. CEA-R-4626 (1974)Google Scholar
  39. 39.
    V. G. Vorobeva, N.P. Dyachenko, B.D. Kuzminov et al., Determination of energy dependence of NU for uranium-238, plutonium-240 and plutonium-241 from an analysis of the fission energy balance. YK-15, 3 (1974)Google Scholar
  40. 40.
    Yu. A. Khokhlov, I.A. Ivanin, V.I. Inkov et al., Measurement results of average neutron multiplicity from neutron induced fission of actinides in 0.5–10 MeV energy range, in Proceedings of International Conference Nuclear Data for Science and Technology, Gatlinburg (1994), p. 272Google Scholar
  41. 41.
    T.E. Young, S.D. Reeder, Total neutron cross section of \(^{242}\)Pu. Nucl. Sci. Eng. 40, 389–395 (1970).  https://doi.org/10.13182/NSE70-A20190 CrossRefGoogle Scholar
  42. 42.
    M. S. Moore, P.W. Lisowski, G.L. Morgan et al., Total cross section of \(^{242}\)Pu between 0.7 and 170 MeV. in Conference on Nuclear Cross Sections for Technology, Knoxville (1979), p. 703Google Scholar
  43. 43.
    D. M. Drake, M. Drosg, P. Lisowski, et al., Neutron scattering cross sections for Pu-242. LA-7855 (1979)Google Scholar
  44. 44.
    G. Haouat, J. Lachkar, C.H. Lagrange et al., Neutron scattering cross sections for \(^{232}\)Th, \(^{233}\)U, \(^{235}\)U, \(^{238}\)U, \(^{239}\)Pu and \(^{242}\)Pu between 0.6 and 3.4 MeV. Nucl. Sci. Eng. 81, 491–511 (1982).  https://doi.org/10.13182/NSE82-A21439 CrossRefGoogle Scholar
  45. 45.
    R. W. Hockenbury, A. J. Sanislo, N. N. Kaushal, keV capture cross section of \(^{242}\)Pu, in Conference on Nuclear Cross Sections and Technology, 2, Washington (1975), p. 584Google Scholar
  46. 46.
    M.Q. Buckner, C.Y. Wu, R.A. Henderson et al., Absolute measurement of the \(^{242}\)Pu neutron-capture cross section. Phys. Rev. C 93, 044613 (2016).  https://doi.org/10.1103/PhysRevC.93.044613 CrossRefGoogle Scholar
  47. 47.
    P. Salvador-Castineira, T. Brys, R. Eykens et al., Neutron induced fission cross sections of \(^{242}\)Pu from 0.3 MeV to 3 MeV. Phys. Rev. C 92, 044606 (2015).  https://doi.org/10.1103/PhysRevC.92.044606 CrossRefGoogle Scholar
  48. 48.
    C. Matei, F. Belloni, J. Heyse et al., Absolute cross section measurements of neutron-induced fission of \(^{242}\)Pu from 1 to 2.5 MeV. Phys. Rev. C 95, 024606 (2017).  https://doi.org/10.1103/PhysRevC.95.024606 CrossRefGoogle Scholar
  49. 49.
    M.S. Moore, J.A. Wartena, H. Weigmann et al., Neutron induced fission cross section of \(^{244}\)Pu. Nucl. Phys. A 393, 1–14 (1983).  https://doi.org/10.1016/0375-9474(83)90061-1 CrossRefGoogle Scholar
  50. 50.
    B. M. Gokhberg, S. M. Dubrovina, V. A. Shigin, Fast neutron fission cross-section of \(^{244}\)Pu. YFI-22, 10 (1976)Google Scholar
  51. 51.
    E. F. Fomushkin, B.K. Maslennikov, G.F. Novoselov et al., Fission Threshold Measurement of \(^{244}\)Pu by Neutrons. YFI-22, 11 (1976)Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingChina
  2. 2.China Institute of Atomic EnergyBeijingChina
  3. 3.Department of PhysicsNankai UniversityTianjinChina

Personalised recommendations