Energy loss of degrader in SC200 proton therapy facility

  • Feng JiangEmail author
  • Yun-Tao Song
  • Jin-Xing Zheng
  • Xian-Hu Zeng
  • Peng-Yu Wang
  • Jun-Sheng Zhang
  • Wu-Quan Zhang


The proton beam energy determines the range of particles and thus where the dose is deposited. According to the depth of tumors, an energy degrader is needed to modulate the proton beam energy in proton therapy facilities based on cyclotrons, because the energy of beam extracted from the cyclotron is fixed. The energy loss was simulated for the graphite degrader used in the beamline at the superconducting cyclotron of 200 MeV in Hefei (SC200). After adjusting the mean excitation energy of the graphite used in the degrader to 76 eV, we observed an accurate match between the simulations and measurements. We also simulated the energy spread of the degraded beam and the transmission of the degrader using theoretical formulae. The results agree well with the Monte Carlo simulation.


Degrader Energy loss Mean excitation energy Energy spread Transmission 



The authors are grateful for the financial support from Hefei CAS Ion Medical and Technical Devices Co., Ltd.


  1. 1.
    J.M. Slater, O.J. Archambeau, D.W. Miller et al., The proton treatment center at Loma Linda University Medical Center: rationale for and description of its development. Int. J. Radiat. Oncol. Biol. Phys. 22, 383–389 (1992). CrossRefGoogle Scholar
  2. 2.
    W.P. Jones, G.P.A. Berg, Design of a beam transport system for a proton radiation therapy facility, in Particle Accelerator Conference, 1999. Proceedings of the. IEEE, vol. 4, 1999, pp. 2519–2521.
  3. 3.
    J.B. Flanz, F. Gerardi, E.L. Hubbard, Design considerations for a proton therapy beamline with an energy degrader, in Fourteenth International Conference on the Application of Accelerators in Research & Industry (American Institute of Physics, 1997), pp. 1257–1260.
  4. 4.
    G. Karamysheva, Y. Bi, G. Chen, et al., Compact superconducting cyclotron SC200 for proton therapy, in Proceedings of Cyclotrons 2016, Zurich, Switzerland, September 2016Google Scholar
  5. 5.
    X.H. Zeng, J.X. Zheng, Y.T. Song et al., Beam optics study for energy selection system of SC200 superconducting proton cyclotron. Nucl. Sci. Tech. 29, 134 (2018). CrossRefGoogle Scholar
  6. 6.
    E. Pedroni, R. Bearpark, T. Böhringer et al., The PSI Gantry 2: a second generation proton scanning gantry. Med. Phys. 14, 25–34 (2004). CrossRefGoogle Scholar
  7. 7.
    M.J. van Goethem, R. van der Meer, H.W. Reist et al., Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line. Phys. Med. Biol. 54, 5831–5846 (2009). CrossRefGoogle Scholar
  8. 8.
    F. Stichelbaut, Y. Jongen, Properties of an energy degrader for light ions. 4, 272–275 (2014). CrossRefGoogle Scholar
  9. 9.
    E.W. Cascio, S. Sarkar, A continuously variable water beam degrader for the radiation test beamline at the Francis H. Burr Proton Therapy Center, in 2007 IEEE Radiation Effects Data Workshop, 2007, pp. 30–33.
  10. 10.
    J.A. Brennsæter, The Influence of the Energy Degrader Material for a Therapeutical Proton Beam, 2015Google Scholar
  11. 11.
    M.J. Berger, et al., Stopping powers and ranges for protons and alpha particles. J. Int. Comm. Radiat. Units Meas. (1993). CrossRefGoogle Scholar
  12. 12.
    D.E. Groom, Energy loss in matter by heavy particles. Particle Data Group Notes, PDG-93-06Google Scholar
  13. 13.
    D.E. Groom, S.R. Klein, Passage of particles through matter. Eur. Phys. J. C 15, 163–173 (2000). CrossRefGoogle Scholar
  14. 14.
    M. Behar, C.D. Denton, R.C. Fadanelli et al., Experimental and theoretical determination of the stopping power of ZrO2 films for protons and α-particles. Eur. Phys. J. D 59, 209–213 (2010). CrossRefGoogle Scholar
  15. 15.
    C.C. Montanari, J.E. Miraglia, S. Heredia-Avalos et al., Calculation of energy-loss straggling of C, Al, Si, and Cu for fast H, He, and Li ions. Phys. Rev. A 75, 441–445 (2007). CrossRefGoogle Scholar
  16. 16.
    Y. Kido, T. Hioki, Measurements of energy loss and straggling for fast H+ in metals and their compounds by means of a nuclear resonant reaction. Phys. Rev. B 27, 2667–2673 (1983). CrossRefGoogle Scholar
  17. 17.
    M. Behar, R.C. Fadanelli, I. Abril et al., Energy-loss straggling study of proton and alpha-particle beams incident onto ZrO2, and Al2O3 films. Eur. Phys. J. D 64, 297–301 (2011). CrossRefGoogle Scholar
  18. 18.
    R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Universal parameterization of absorption cross sections. Nucl. Instrum. Methods B. 117, 347 (1996). CrossRefGoogle Scholar
  19. 19.
    H. Paul, A comparison of recent stopping power tables for light and medium-heavy ions with experimental data, and applications to radiotherapy dosimetry. Nucl. Instrum. Methods 247, 166–172 (2006). CrossRefGoogle Scholar
  20. 20.
    T. Aso, A. Kimura, S. Tanaka et al., Verification of the dose distributions with GEANT4 simulation for proton therapy. IEEE Trans. Nucl. Sci. 52, 896–901 (2005). CrossRefGoogle Scholar
  21. 21.
    H. Paganetti, H. Jiang, S.Y. Lee et al., Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med. Phys. 31, 2107 (2004). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Feng Jiang
    • 1
    • 2
  • Yun-Tao Song
    • 1
    • 2
  • Jin-Xing Zheng
    • 1
    • 2
  • Xian-Hu Zeng
    • 1
    • 2
  • Peng-Yu Wang
    • 1
    • 2
  • Jun-Sheng Zhang
    • 1
    • 2
  • Wu-Quan Zhang
    • 1
  1. 1.Institute of Plasma PhysicsChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations