Analysis of electro-optical intensity modulator for bunch arrival-time monitor at SXFEL

  • Jin-Guo Wang
  • Xiao-Qing Liu
  • Lie Feng
  • Wen-Yan Zhang
  • Xing-Tao Wang
  • Bo LiuEmail author


A bunch arrival-time monitor (BAM) based on an electro-optical intensity modulation scheme is currently under development at Shanghai Soft X-ray Free-Electron Laser to meet the high-resolution requirements for bunch stability. The BAM uses a radio frequency signal generated by a pickup cavity to modulate the reference laser pulses in an electro-optical intensity modulator (EOM), and the bunch arrival-time information is derived from the amplitude change of the laser pulse after laser pulse modulation. EOM is a key optical component in the BAM system. Through the basic principle analysis of BAM, many parameters of the EOM are observed to affect the measurement resolution of the BAM system. Therefore, a systematic analysis of the EOM is crucial. In this paper, we present two schemes to compare and analyze an EOM and provide a reference for selecting a new version of the EOM.


Bunch arrival-time monitor (BAM) Soft X-ray Free-Electron Laser (SXFEL) High resolution Electro-optical intensity modulator (EOM) 


  1. 1.
    J.M.J. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906 (1971). CrossRefGoogle Scholar
  2. 2.
    B.W.J. McNeil, N.R. Thompson, X-ray free-electron lasers. Nat. Photonics 4, 814–821 (2010). CrossRefGoogle Scholar
  3. 3.
    P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photonics 4(9), 641 (2010). CrossRefGoogle Scholar
  4. 4.
    Z.T. Zhao, C. Feng, K.Q. Zhang, Two-stage EEHG for coherent hard X-ray generation based on a superconducting linac. Nucl. Sci. Tech. 28, 117 (2017). CrossRefGoogle Scholar
  5. 5.
    Z. Wang, C. Feng, Q. Gu et al., Generation of double pulses at the Shanghai soft X-ray free electron laser facility. Nucl. Sci. Tech. 28, 28 (2017). CrossRefGoogle Scholar
  6. 6.
    W.Y. Zhang, Q.X. Liu, L. Feng et al., 2.856 GHz microwave signal extraction from mode-locked Er-fiber lasers with sub-100 femtosecond timing jitter. Nucl. Sci. Tech. 29, 91 (2018). CrossRefGoogle Scholar
  7. 7.
    P.G. O’Shea, H.P. Freund, Free-electron lasers: status and applications. Science 292(5523), 1853–1858 (2001). CrossRefGoogle Scholar
  8. 8.
    U. Bergmann, J. Corlett, S. Dierker et al., Science and Technology of Future Light Sources. A white paper, ANL-08/39, 2008.
  9. 9.
    L.H. Yu, Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178. (1991). CrossRefGoogle Scholar
  10. 10.
    L.H. Yu, M. Babzien, I. Ben-Zvi et al., First lasing of a high-gain harmonic generation free-electron laser experiment. Nucl. Instrum. Methods A 445, 301–306. (2000). CrossRefGoogle Scholar
  11. 11.
    L.H. Yu, M. Babzien, I. Ben-Zvi et al., High-gain harmonic-generation free-electron laser. Science 289, 932–934 (2000). CrossRefGoogle Scholar
  12. 12.
    G. Stupakov. Using the Beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009). CrossRefGoogle Scholar
  13. 13.
    D. Xiang, G. Stupakov, Echo-enabled harmonic generation free electron laser. Phys. Rev. ST Accel. Beams 12, 030702 (2009). CrossRefGoogle Scholar
  14. 14.
    Z.T. Zhao, D. Wang, J.H. Chen et al., First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics 6, 360–363 (2012). CrossRefGoogle Scholar
  15. 15.
    Shanghai Soft X-ray FEL (SXFEL), Conceptual Design Report (2015)Google Scholar
  16. 16.
    F. Loehl, K. Hacker, H. Schlarb, WEPB15: A sub-50 femtosecond bunch arrival time monitor system for FLASH, in Proceedings of DIPAC, Venice, Italy, 20–23 May 2007Google Scholar
  17. 17.
    F. Löhl, V. Arsov, M. Felber et al., Electron bunch timing with femtosecond precision in a superconducting free-electron laser. Phys. Rev. Lett. 104, 144801 (2010). CrossRefGoogle Scholar
  18. 18.
    J.G. Wang, B. Liu, THPML065: Preliminary results of the bunch arrival-time monitor at SXFEL, in Proceedings of IPAC, Vancouver, Canada, April 29 to May 4, 2018.
  19. 19.
    R.G. Hunsperger, Integrated Optics Theory and Technology, 6th edn. (Springer, New York, 2009), pp. 117–188Google Scholar
  20. 20.
    M.K. Bock, Measuring the Electron Bunch Timing with fs Resolution at FLASH. Ph.D. thesis, University Hamburg, Hamburg, Germany (2013)Google Scholar
  21. 21.
    A. Kuhl, S. Schnepp, A. Angelovski et al., MOPD34: Analysis of new pickup designs for the FLASH and XFEL bunch arrival time monitor system, in Proceedings of DIPAC, Hamburg, Germany, 16–18 May (2011)Google Scholar
  22. 22.
  23. 23.
    L.A. Bergman, S.T. Eng, A.R. Johnston, Temperature stability of transit time delay for a single-mode fibre in a loose tube cable. Electron. Lett. 19(21), 865–866 (1983). CrossRefGoogle Scholar
  24. 24.
    M. Bousonville, M.K. Bock, M. Felber et al., MOPG033: New phase stable optical fiber, in Proceedings of BIW2012, Newport News, VA USA. 15–19 April (2012)Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jin-Guo Wang
    • 1
    • 2
  • Xiao-Qing Liu
    • 1
  • Lie Feng
    • 1
  • Wen-Yan Zhang
    • 1
  • Xing-Tao Wang
    • 1
  • Bo Liu
    • 1
    Email author
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of ScienceShanghaiChina
  2. 2.University of the Chinese Academy of ScienceBeijingChina

Personalised recommendations