A 4H–SiC betavoltaic battery based on a \(^{\textbf{63}}{\textbf{Ni}}\) source

  • Yu-Min Liu
  • Jing-Bin LuEmail author
  • Xiao-Yi Li
  • Xu Xu
  • Rui He
  • Hui-Dong Wang


A 4H–SiC–\(^{63}{\mathrm{Ni}}\) p–n-junction-based betavoltaic battery is investigated. The Monte Carlo method is used to simulate the self-absorption effect of the\(^{63}\hbox {Ni}\) source, the backscattering process, and the transport of beta particles in 4H–SiC material. The main factors that affect the energy conversion efficiencies of the cell are analyzed. Based on the simulation results, it can be calculated that, when the thickness of the \(^{63}\hbox {Ni}\) source increases from \(2\times 10^{-3}\) to \(10\,\upmu \hbox {m}\), the theoretical maximum device conversion efficiency increases from 16.77 to \(23.51\%\) and the total conversion efficiency decreases from 16.73 to \(1.48\%\). Furthermore, a feasible design with a maximum output power density of \(0.36\,\upmu \hbox {W}/\hbox {cm}^{2}\) and an optimal device conversion efficiency of \(23.5\%\) is obtained.


4H–SiC–\(^{63}{\mathrm{Ni}}\) betavoltaic battery p–n junction Energy conversion efficiency 


  1. 1.
    M.A. Prelas, C.L. Weaver, M.L. Watermann, A review of nuclear batteries. Prog. Nucl. Energy 75, 117–148 (2014). CrossRefGoogle Scholar
  2. 2.
    M. Lu, G.G. Zhang, K. Fu, Gallium Nitride Schottky betavoltaic nuclear batteries. Energy Convers. Manag. 52, 1955–1958 (2011). CrossRefGoogle Scholar
  3. 3.
    X.Y. Li, Y. Ren, X.J. Chen, \(^{63}\text{ Ni }\) schottky barrier nuclear battery of 4H–SiC. Radioanal. Nucl. Chem. 287, 173–176 (2011). CrossRefGoogle Scholar
  4. 4.
    X.B. Tang, D. Ding, Y.P. Liu, Optimization design and analysis of Si–\(^{63}\text{ Ni }\) betavoltaic battery. Sci. China. Tech. Sci. 55, 990–996 (2012). CrossRefGoogle Scholar
  5. 5.
    X.B. Tang, Y.P. Liu, D. Ding et al., Optimization design of GaN betavoltaic microbattery. Sci. China. Tech. Sci. 55, 659–664 (2012). CrossRefGoogle Scholar
  6. 6.
    F.H. Li, G. Xu, Y.L. Yuan et al., GaN PIN betavoltaic nuclear batteries. Sci. China. Tech. Sci. 57, 25–28 (2014). CrossRefGoogle Scholar
  7. 7.
    Y.P. Liu, X.B. Tang, Z.H. Xu et al., Optimization and temperature effects on sandwich betavoltaic microbattery. Sci. China. Tech. Sci. 57, 14–18 (2014). CrossRefGoogle Scholar
  8. 8.
    V. Bormashov, S. Troschiev, A. Volkov, Development of nuclear microbattery prototype based on Schottky barrier diamond diodes. Phys. Stat. Solidi A. 11, 2539–2547 (2015). CrossRefGoogle Scholar
  9. 9.
    Y.P. Liu, X.B. Tang, Z.H. Xu et al., Influences of planar source thickness on betavoltaics with different semiconductors. Radioanal. Nucl. Chem. 304, 517–525 (2015). CrossRefGoogle Scholar
  10. 10.
    G. Gui, K. Zhang, J.P. Blanchard, Prediction of 4H–SiC betavoltaic microbattery characteristics based on practical Ni-63 sources. Appl. Radiat. Isot. 107, 272–277 (2016). CrossRefGoogle Scholar
  11. 11.
    S. Tarelkin, V. Bormashov, E. Korostylev, Comparative study of different metals for Schottky barrier diamond betavoltaic power converter by EBIC technique. Phys. Stat. Solidi A. 9, 2492–2497 (2016). CrossRefGoogle Scholar
  12. 12.
    F. Rahmani, H. Khosravinia, Optimization of Silicon parameters as a betavoltaic battery: comparison of Si \(\text{p}\)\(\text{n}\) and Ni/Si Schottky barrier. Radiat. Phys. Chem. 125, 205–212 (2016). CrossRefGoogle Scholar
  13. 13.
    C. Delfaure, M. Pomorski, J. de Sanoit et al., Single crystal CVD diamond membranes for betavoltaic cells. Appl. Phys. Lett. 108, 252105:1–252105:4 (2016). CrossRefGoogle Scholar
  14. 14.
    K. Zhang, G. Gui, P. Pathak et al., Quantitative modeling of betavoltaic microbattery performance. Sens. Actuators A. 240, 131–137 (2016). CrossRefGoogle Scholar
  15. 15.
    H. Sadeghi, S.M. Mostajabodavati, A. Eshaghi, Design and simulation of a semispherical semiconductor to construct a beta-voltaic battery using \(c\)-Si and \(a\)-Si: H materials with different doping concentration. J. Comput. Electron. 15, 1577–1592 (2016). CrossRefGoogle Scholar
  16. 16.
    C. Thomas, S. Portnoff, M.G. Spencer, High efficiency 4H–SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 108(013505), 1–4 (2016). CrossRefGoogle Scholar
  17. 17.
    S. Butera, G. Lioliou, A.B. Krysa, Temperature dependence of an AlInP \(^{63}\text{ Ni }\) betavoltaic cell. J. Appl. Phys. 120(144501), 1–5 (2016). CrossRefGoogle Scholar
  18. 18.
    A.A. Krasnov, V.V. Starkov, S.A. Legotin, Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation. Appl. Radiat. Isot. 121, 71–75 (2017). CrossRefGoogle Scholar
  19. 19.
    H.C. Wu, Dissertation. Dalian University of Technology. pp. 20–30 (2005)Google Scholar
  20. 20.
    N.A. Kuruoglu, O. Ozdemir, K. Bozlcurt, Betavoltaic study of a GaN \(\text{p}\)\(\text{i}\)\(\text{n}\) structure grown by metal-organic vapour phase epitaxy with a Ni-63 source. Thin Solid Films. 636, 746–750 (2017). CrossRefGoogle Scholar
  21. 21.
    Y.P. Liu, Z.H. Xu, H. Wang, Vacuum degree effects on betavoltaics irradiated by \(^{63}\text{ Ni }\) with differently apparent activity densities. Sci. China Tech. Sci. 60, 282–288 (2017). CrossRefGoogle Scholar
  22. 22.
    D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th edn. (Publishing House of Electronics Industry, McGraw-Hill Education, Xi’an, 2017), pp. 248–630Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yu-Min Liu
    • 1
  • Jing-Bin Lu
    • 1
    Email author
  • Xiao-Yi Li
    • 1
  • Xu Xu
    • 1
  • Rui He
    • 1
  • Hui-Dong Wang
    • 1
  1. 1.College of PhysicsJilin UniversityChangchunChina

Personalised recommendations