Advertisement

Sub-picosecond electron bunch length measurement using coherent transition radiation at SXFEL

  • Yu Bian
  • Wen-Yan Zhang
  • Bo Liu
  • Dong Wang
Article

Abstract

Longitudinal electron bunch length plays a significant role in single-pass free-electron lasers (FEL), as the high-gain FEL process depends strongly on the high peak current of electron bunches. Longitudinal electron bunch length was measured by detecting the interferogram of coherent transition radiation generated by electron bunches using a THz interferometer and a Golay cell (spectral range 0.02–20 THz) at Shanghai X-ray free-electron laser. The detailed process of measurement and data analysis are discussed herein. Furthermore, the electron bunch length was estimated based on the dispersive strength \( R_{56} \) of the bunch compressor and the energy spread \( \delta \) of electron bunches, which were obtained via experiments. The comparison showed that the measured bunch length was consistent with the estimated bunch length.

Keywords

Electron bunch length THz interferometer Coherent transition radiation Beam diagnostics 

Notes

Acknowledgements

We thank Dr. Jin-Feng Yang and Dao Xiang for their useful discussions and encouragement.

References

  1. 1.
    Z.T. Zhao, S.Y. Chen, L.H. Yu et al., Shanghai soft X-ray free electron laser test facility, in Proceedings of IPAC2011, San Sebastián, Spain, pp. 3011–3013 (2011)Google Scholar
  2. 2.
    A. Bolzmann, Investigation of the longitudinal charge distribution of electron bunches at the VUV-FEL using the transverse deflecting cavity LOLA. Dissertation, DESY, Hamburg (2005)Google Scholar
  3. 3.
    G. Berden, W.A. Gillespie, S.P. Jamison et al., Benchmarking of electro-optic monitors for femtosecond electron bunches. Phys. Rev. Lett. 99, 164801 (2007).  https://doi.org/10.1103/PhysRevLett.99.164801 CrossRefGoogle Scholar
  4. 4.
    M. Abo-Bakr, J. Feikes, K. Holldack et al., Brilliant, coherent far-infrared (THz) synchrotron radiation. Phys. Rev. Lett. 90, 09480 (2003).  https://doi.org/10.1103/PhysRevLett.90.094801 CrossRefGoogle Scholar
  5. 5.
    M. Castellano, V.A. Verzilov, Measurement of coherent diffraction radiation and its application for bunch length diagnostics in particle accelerators. Phys. Rev. E 63, 056501 (2001).  https://doi.org/10.1103/PhysRevE.63.056501 CrossRefGoogle Scholar
  6. 6.
    S.E. Korbly, A.S. Kesar, R.J. Temkin, Measurement of subpicosecond bunch lengths using coherent Smith–Purcell radiation. Phys. Rev. Spec. Top. AC 9, 022802 (2006).  https://doi.org/10.1103/physrevstab.9.022802 Google Scholar
  7. 7.
    A. Murokh, J.B. Rosenzweig, M. Hogan et al., Bunch length measurement of picosecond electron beams from a photo-injector using coherent transition radiation. Nucl. Instrum. Methods A 410, 452–460 (1998)CrossRefGoogle Scholar
  8. 8.
    E. Hemsing, G. Stupakov, D. Xiang, Beam by design: laser manipulation of electrons in modern accelerators. Rev. Mod. Phys. 86, 897–941 (2014).  https://doi.org/10.1103/RevModPhys.86.897 CrossRefGoogle Scholar
  9. 9.
    H. Lihn, P. Kung, C. Settakorn et al., Measurement of sub-picosecond electron pulses. Phys. Rev. E 53, 6413–6418 (1996).  https://doi.org/10.1103/PhysRevE.53.6413 CrossRefGoogle Scholar
  10. 10.
    Z.H. Li, J.P. Dai, X.P. Yang et al., Analysis and calculation on electron bunch length measurement by using CTR. High Energy Phys. Nucl. Phys. 27, 831–835 (2003). (in Chinese) Google Scholar
  11. 11.
    D. Mihalcea, C.L. Bohn, U. Happek et al., Longitudinal electron bunch diagnostics using coherent transition radiation. Phys. Rev. Spec. Top. Accel. Beams 9, 082801 (2006).  https://doi.org/10.1103/PhysRevSTAB.9.082801 CrossRefGoogle Scholar
  12. 12.
    P. Kung, H. Lihn, H. Wiedemann, Generation and measurement of 50-fs (rms) electron pulses. Phys. Rev. Lett. 73, 967–970 (1994).  https://doi.org/10.1103/PhysRevLett.73.967 CrossRefGoogle Scholar
  13. 13.
    I. Nozawa, K. Kan, J. Yang et al., Measurement of < 20 fs bunch length using coherent transition radiation. Phys. Rev. Spec. Top. AC 17, 072803 (2014).  https://doi.org/10.1103/physrevstab.17.072803 Google Scholar
  14. 14.
    L. Fröhlich, O. Grimm, Bunch length measurements using a Martin–Puplett interferometer at the VUV-FEL, in Proceedings of the 27th International Free Electron Laser Conference, Stanford, California, USA, pp. 114–117 (2005)Google Scholar
  15. 15.
    C. Thongbai, K. Kusoljariyakul, S. Rimjaem et al., Femtosecond electron bunches, source and characterization. Nucl. Instrum. Methods Phys. Res. A 587, 130–135 (2008).  https://doi.org/10.1016/j.nima.2007.12.023 CrossRefGoogle Scholar
  16. 16.
    D. Xiang, G. Stupakov, Enhanced tunable narrow-band THz emission from laser-modulated electron beams. Phys. Rev. Spec. Top. Accel. Beams 12, 080701 (2009).  https://doi.org/10.1103/PhysRevSTAB.12.080701 CrossRefGoogle Scholar
  17. 17.
    R. Lai, A.J. Sievers, Determination of a charged-particle-bunch shape from the coherent far infrared spectrum. Phys. Rev. E 50, R3342–R3343 (1994).  https://doi.org/10.1103/PhysRevE.50.R3342 CrossRefGoogle Scholar
  18. 18.
    C. Behrens, N. Gerasimova, C. Gerth et al., Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft x-ray free-electron laser. Phys. Rev. Spec. Top. Accel. Beams 15, 030707 (2012).  https://doi.org/10.1103/PhysRevSTAB.15.030707 CrossRefGoogle Scholar
  19. 19.
    D. Xiang, X.F. Yang, W.H. Huang et al., Experimental characterization of sub-picosecond electron bunch length with coherent diffraction radiation. Chin. Phys. Lett. 25, 2440–2443 (2008).  https://doi.org/10.1088/0256-307X/25/7/030 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations