Upgrade of macromolecular crystallography beamline BL17U1 at SSRF

  • Qi-Sheng Wang
  • Kun-Hao Zhang
  • Yin Cui
  • Zhi-Jun Wang
  • Qiang-Yan Pan
  • Ke Liu
  • Bo Sun
  • Huan Zhou
  • Min-Jun Li
  • Qin Xu
  • Chun-Yan Xu
  • Feng Yu
  • Jian-Hua He
Article
  • 20 Downloads

Abstract

Beamline BL17U1 at Shanghai Synchrotron Radiation Facility is an energy-tunable macromolecular crystallography beamline that has been in user operation since 2009. Growing demand from the user community for a small beam and related experimental methods have motivated upgrades of the devices in the endstation. Minibeam modes have already been developed for operation. A self-integrated diffractometer reduces the sphere of confusion of the rotatory axis to 1 µm. The new diffractometer is equipped with an upgraded on-axis viewing system that can improve the resolving power. Additionally, the area detector was also upgraded to the newest generation of detectors, the EIGER X 16M, which can collect data at 133 Hz. After these upgrades, the endstation became virtually new. This paper covers the upgrade of the endstation devices and gives the first data collection results.

Keywords

Shanghai Synchrotron Radiation Facility Macromolecular crystallography Endstation Goniometer Fine-phi slicing 

References

  1. 1.
    R.L. Owen, J. Juanhuix, M. Fuchs, Current advances in synchrotron radiation instrumentation for MX experiments. Arch. Biochem. Biophys. 602, 21–31 (2016).  https://doi.org/10.1016/j.abb.2016.03.021 CrossRefGoogle Scholar
  2. 2.
    Biosync, Biosync: a structure biologist’s guide to high energy data collection facilities (2017). http://biosync.rcsb.org. Accessed 1 Jan 1995
  3. 3.
    Q.S. Wang, F. Yu, S. Huang et al., The macromolecular crystallography beamline of SSRF. Nucl. Sci. Tech. 26, 010102 (2015).  https://doi.org/10.13538/j.1001-8042/nst.26.010102 Google Scholar
  4. 4.
    Q.Y. Pan, Q.S. Wang, Z.J. Wang et al., An active beamstop for accurate measurement of high intensity X-ray beams. Nucl. Instrum. Methods Phys. Res. A 735, 584–586 (2014).  https://doi.org/10.1016/j.nima.2013.10.011 CrossRefGoogle Scholar
  5. 5.
    H. Group, Support the DHF group (2017). https://support.hdfgroup.org. Accessed 18 Sep 1990
  6. 6.
    Q. Wang, S. Huang, B. Sun et al., Control and data acquisition system for the macromolecular crystallography beamline of SSRF. Nucl. Tech. 35, 5–11 (2012). (in Chinese) Google Scholar
  7. 7.
    A. Casanas, R. Warshamanage, A.D. Finke et al., EIGER detector: application in macromolecular crystallography. Acta Crystallogr. D Struct. Biol. 72, 1036–1048 (2016).  https://doi.org/10.1107/S2059798316012304 CrossRefGoogle Scholar
  8. 8.
    M. Mueller, M.T. Wang, C. Schulze-Briese, Optimal fine φ-slicing for single-photon-counting pixel detectors. Acta Crystallogr. D Biol. Crystallogr. 68, 42–56 (2012).  https://doi.org/10.1107/S0907444911049833 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Qi-Sheng Wang
    • 1
  • Kun-Hao Zhang
    • 1
  • Yin Cui
    • 1
  • Zhi-Jun Wang
    • 1
  • Qiang-Yan Pan
    • 1
  • Ke Liu
    • 1
  • Bo Sun
    • 1
  • Huan Zhou
    • 1
  • Min-Jun Li
    • 1
  • Qin Xu
    • 1
  • Chun-Yan Xu
    • 1
  • Feng Yu
    • 1
  • Jian-Hua He
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations