Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4

  • Yan Fan
  • Guang-Ming Huang
  • Xiang-Ming Sun
  • Zhen Wang
  • Shu-Guang Zou
  • Jun Liu
  • Dong Wang
  • Hui-Li Kang
  • Ping Yang
  • Hua Pei
  • Da-Ming Sun
  • Zi-Li Li
Article
  • 23 Downloads

Abstract

Real-time monitoring of the Bragg peak location of carbon ions is urgently required for the quality control of hadron therapy. In this study, we design an annular detector to monitor the Bragg peak location of carbon ions with Geant4 simulation . This \(360{^\circ }\) surrounding structure has a high detection efficiency for the small-dose situation. The detector consists of a multilayered collimator system and an NaI scintillator for prompt gamma counting. The multilayered collimator includes a lead layer to prevent unwanted gammas and the paraffin and boron carbide layers to moderate and capture fast neutrons . An inclination of the detector further diminishes the background signal caused by neutrons. The detector, with optimized parameters, is applicable to carbon ions of different energies. In addition, the scintillator is replaced by an improved EJ301 organic liquid scintillator to discriminate gammas and neutrons. Inserting thin Fe slices into the liquid scintillator improves the energy deposition efficiency. The Bragg peak location of 200 MeV/u carbon ions can be monitored by prompt gamma detection with the improved liquid scintillator.

Keywords

Bragg peak Carbon ion Prompt \(\upgamma \)-ray Geant4 

References

  1. 1.
    G. Kraft, Tumortherapy with ion beams. Nucl. Instrum. Meth. A 454, 1–10 (2000).  https://doi.org/10.1016/S0168-9002(00)00802-0 CrossRefGoogle Scholar
  2. 2.
    U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 68, 1861–1882 (2005).  https://doi.org/10.1088/0034-4885/68/8/R04 CrossRefGoogle Scholar
  3. 3.
    G. Kraft, Ion beam therapy in Europe, Application of Accelerators in Research and Industry: Twentieth International Conference. AIP Conference Proceedings, 1099, 429–434 (2009).  https://doi.org/10.1063/1.3120066
  4. 4.
    C.H. Min, C.H. Kim, M.Y. Youn et al., Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl. Phys. Lett. 89, 183517 (2006).  https://doi.org/10.1063/1.2378561 CrossRefGoogle Scholar
  5. 5.
    J.C. Polff, S. Peterson, M. McCleskey et al., Measurement and calculation of characteristic prompt gamma ray spectra during proton irradiation. Phys. Med. Biol. 54, 519–527 (2009).  https://doi.org/10.1088/0031-9155/54/22/N02 CrossRefGoogle Scholar
  6. 6.
    E. Testa, M. Bajard, M. Chevallier et al., Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt gamma-ray measurements. Appl. Phys. Lett. 93, 093506 (2008).  https://doi.org/10.1063/1.2975841 CrossRefGoogle Scholar
  7. 7.
    E. Testa, M. Bajard, M. Chevallier et al., Dose profile monitoring with carbon ions by means of prompt-gamma measurements. Nucl. Instrum. Meth. B 267, 993–996 (2009).  https://doi.org/10.1016/j.nimb.2009.02.031 CrossRefGoogle Scholar
  8. 8.
    E. Testa, M. Bajard, M. Chevallier et al., Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection. Radiat. Environ. Biophys. 49, 337–343 (2010).  https://doi.org/10.1007/s00411-010-0276-2 CrossRefGoogle Scholar
  9. 9.
    S. Chauvie, S. Guatelli, V. Ivanchenko, et al., Geant4 Low Energy Electromagnetic Physics, in Conference Record 2004 IEEE Nuclear Science Symposium, 3, 1881–1885 (2004).  https://doi.org/10.1109/NSSMIC.2004.1462612
  10. 10.
    J.P. Wellisch, Hadronic shower models in Geant4—the frameworks. Comput. Phys. Commun. 140, 65–75 (2001).  https://doi.org/10.1016/S0010-4655(01)00256-9 CrossRefMATHGoogle Scholar
  11. 11.
    G.A.P.Cirrone, G. Cuttone, F. D. Rosa, et al., Validation of Geant4 Physics Models for the Simulation of the Proton Bragg Peak, in Conference Record 2006 IEEE Nuclear Science Symposium, N22-2, 788–792 (2006).  https://doi.org/10.1109/NSSMIC.2006.355969
  12. 12.
    D. Schardt, Tumor therapy with high-energy carbon ion beams. Nucl. Phys. A 787, 633–641 (2007).  https://doi.org/10.1016/j.nuclphysa.2006.12.097 CrossRefGoogle Scholar
  13. 13.
    C.H. Min, J.G. Park, S.H. An et al., Determination of optimal energy window for measurement of prompt gammas from proton beam by Monte Carlo simulations. J. Nucl. Sci. Technol 45, 28–31 (2014).  https://doi.org/10.1080/00223131.2008.10875777 CrossRefGoogle Scholar
  14. 14.
    L. Chang, Y. Liu, D. Long et al., Pulse shape discrimination and energy calibration of EJ301 liquid scintillation detector. Nucl. Tech 38, 1–6 (2015).  https://doi.org/10.11889/j.0253-3219.2015.hjs.38.020501. (in Chinese) CrossRefGoogle Scholar
  15. 15.
    S.Y.L.T. Zhang, Z.Q. Chen, R. Han, Study on gamma response function of EJ301 organic liquid scintillator with GEANT4 and FLUKA. Chin. Phys. C 37, 126003 (2013).  https://doi.org/10.1088/1674-1137/37/12/126003 CrossRefGoogle Scholar
  16. 16.
    J. Wu, Y.Q. Liu, T.Y. Ma et al., GATE simulation based feasibility studies of in-beam PET monitoring in \({^{12}}\)C beam cancer therapy. Nucl. Sci. Technol. 21, 275–280 (2010).  https://doi.org/10.13538/j.1001-8042/nst.21.275-280 Google Scholar
  17. 17.
    Q.Y. Wei, T.P. Xu, T.T. Dai et al., Development of a compact DOI-TOF detector module for high-performance PET systems. Nucl. Sci. Technol. 28, 43 (2017).  https://doi.org/10.1007/s41365-017-0202-2 CrossRefGoogle Scholar
  18. 18.
    M.A. Piliero, N. Belcari, M.G. Bisogni et al., First results of the INSIDE in-beam PET scanner for the on-line monitoring of particle therapy treatments. J. Instrum. 11, C12011 (2016).  https://doi.org/10.1088/1748-0221/11/12/C12011 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yan Fan
    • 1
  • Guang-Ming Huang
    • 1
  • Xiang-Ming Sun
    • 1
  • Zhen Wang
    • 1
  • Shu-Guang Zou
    • 1
  • Jun Liu
    • 1
  • Dong Wang
    • 1
  • Hui-Li Kang
    • 1
  • Ping Yang
    • 1
  • Hua Pei
    • 1
  • Da-Ming Sun
    • 1
  • Zi-Li Li
    • 1
  1. 1.PLAC, Key Laboratory of Quark & Lepton Physics (MOE), Department of Physics Science and TechnologyCentral China Normal UniversityWuhanChina

Personalised recommendations