Novel method to measure unloaded quality factor of resonant cavities at room temperature

  • Ping Wang
  • Jia-Ru Shi
  • Zheng-Feng Xiong
  • Ze-Ning Liu
  • Cheng Cheng
  • Huai-Bi Chen
Article
  • 28 Downloads

Abstract

We demonstrated a novel method to measure the unloaded quality factor (Q factor) of high-Q resonant cavities. This method was used to obtain data with low errors and calculate the unloaded Q factor. This procedure was more reliable than traditional methods. The data required for the method were near the resonant frequency, not at the half-power points of the reflection coefficient curve or Smith chart. We applied the new method to measure a resonant cavity with an unloaded Q factor of ~ 100,000, obtaining good agreement between the measured and theoretical results.

Keywords

Resonant cavity Q factor LRC circuit Coupling coefficient 

References

  1. 1.
    C.P. Wang, W.C. Fang, D.C. Tong et al., Design and study of a C-band pulse compressor for the SXFEL linac. Nucl. Sci. Tech. 25, 020101 (2014).  https://doi.org/10.13538/j.1001-8042/nst.25.020101 Google Scholar
  2. 2.
    M. Franzi, J.W. Wang, V. Dolgashev et al., Compact rf polarizer and its application to pulse compression systems. Phys. Rev. Accel. Beams 19, 062002 (2016).  https://doi.org/10.1103/PhysRevAccelBeams.19.062002 CrossRefGoogle Scholar
  3. 3.
    Y. Nishimura, K. Sakaue, M. Nishiyama et al., Design of a two-cell rf-deflector cavity for ultra-short electron bunch measurement. Nucl. Instrum. Methods A 764, 291–298 (2014).  https://doi.org/10.1016/j.nima.2014.07.035 CrossRefGoogle Scholar
  4. 4.
    X. P. Jiang, J. R. Shi, P. Wang et al., C-band deflecting cavity for bunch length measurement of 2.5 MeV electron beam, in Proceedings of 7th International Particle Accelerator Conference (IPAC), Busan, Korea, May 2016, pp. 386–388Google Scholar
  5. 5.
    L. Auditore, R.C. Barna, D. De Pasquale et al., Pulsed 5 MeV standing wave electron linac for radiation processing. Phys. Rev. Accel. Beams 7, 030101 (2004).  https://doi.org/10.1103/PhysRevSTAB.7.030101 CrossRefGoogle Scholar
  6. 6.
    L. Zhang, J.R. Shi, P. Wang et al., An X-band linac with tunable beam energy, in Proceedings of 6th International Particle Accelerator Conference (IPAC), Richmond, US, May 2015, pp. 1644–1646Google Scholar
  7. 7.
    S. Shahid, J.A.R. Ball, C.G. Wells et al., Reflection type Q-factor measurement using standard least squares methods. IET Microw. Antennas Propag. 11, 426–432 (2011).  https://doi.org/10.1049/iet-map.2010.0395 CrossRefGoogle Scholar
  8. 8.
    A.J. Canós, J.M. Catalá-Civera, F.L. Peñaranda-Foix et al., A novel technique for deembedding the unloaded resonance frequency from measurements of microwave cavities. IEEE Trans. Microw. Theory Tech. 54, 3407–3416 (2006).  https://doi.org/10.1109/tmtt.2006.877833 CrossRefGoogle Scholar
  9. 9.
    P. Wang, L.H. Chua, D. Mirshekar-Syahkal, Accurate characterization of low-Q microwave resonator using critical-points method. IEEE Trans. Microw. Theory Tech. 53, 349–353 (2005).  https://doi.org/10.1109/TMTT.2004.839931 CrossRefGoogle Scholar
  10. 10.
    J.M. Drozd, W.T. Joines, Determining Q using S parameter data. IEEE Trans. Microw. Theory Tech. 44, 2123–2127 (1996).  https://doi.org/10.1109/22.543972 CrossRefGoogle Scholar
  11. 11.
    D. Kajfez, Linear fractional curve fitting for measurement of high Q factors. IEEE Trans. Microw. Theory Tech. 42, 1149–1153 (1994).  https://doi.org/10.1109/22.299749 CrossRefGoogle Scholar
  12. 12.
    D. Kajfez, Q-factor measurement with a scalar network analyser. Proc. Inst. Elect. Eng. Microw. Antennas Propag. 142, 369–372 (1995).  https://doi.org/10.1049/ip-map:19952142 CrossRefGoogle Scholar
  13. 13.
    E.-Y. Sun, S.-H. Chao, Unloaded Q measurement—the critical points method. IEEE Trans. Microw. Theory Tech. 43, 1983–1986 (1995).  https://doi.org/10.1109/22.402290 CrossRefGoogle Scholar
  14. 14.
    Y.Z. Wang, Y. Xie, T.L. Zhang et al., Quality factor measurement for MEMS resonator using time domain amplitude decaying method. Microsyst. Technol. 21, 825–829 (2015).  https://doi.org/10.1007/s00542-014-2161-4 CrossRefGoogle Scholar
  15. 15.
    D. Alesini, in Proceedings of the CAS–CERN Accelerator School: RF for accelerators, ed. by R. Bailey, Ebeltoft, Denmark, 8–17 June 2010, edited by, CERN-2011-007, pp. 95–116, 125–147Google Scholar
  16. 16.
    J.R. Bray, L. Roy, Measuring the unloaded, loaded, and external quality factors of one- and two-port resonators using scattering-parameter magnitudes at fractional power levels. Microw. Antennas Propag. IEE Proc. 151, 345–350 (2004).  https://doi.org/10.1002/mop.29716 CrossRefGoogle Scholar
  17. 17.
    P.J. Petersan, S.M. Anlage, Measurement of resonant frequency and quality factor of microwave resonators: comparison of methods. Appl. Phys. 84, 3392–3402 (1998).  https://doi.org/10.1063/1.368498 CrossRefGoogle Scholar
  18. 18.
    K.D. McKinstry, C.E. Patton, Methods for determination of microwave cavity quality factors from equivalent electronic circuit models. Rev. Sci. Instrum. 60, 439–443 (1989).  https://doi.org/10.1063/1.1140397 CrossRefGoogle Scholar
  19. 19.
    D.-H. Han, Y.-S. Kim, M. Kwon, Two port cavity Q measurement using scattering parameters. Rev. Sci. Instrum. 67, 2179–2181 (1996).  https://doi.org/10.1063/1.1147034 CrossRefGoogle Scholar
  20. 20.
    W. Xu, S. Belomestnykh, I. Ben-Zvi et al., Improvement of the Q-factor measurement in RF cavities, in Proceedings of 4th International Particle Accelerator Conference (IPAC), Shanghai, China, May 2013, pp. 2489–2491Google Scholar
  21. 21.
    D. Kajfez, Random and systematic uncertainties of reflection-type Q-factor measurement with network analyzer. IEEE Trans. Microw. Theory Tech. 51, 512–519 (2003).  https://doi.org/10.1109/TMTT.2002.807831 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ping Wang
    • 1
    • 2
  • Jia-Ru Shi
    • 1
    • 2
  • Zheng-Feng Xiong
    • 3
  • Ze-Ning Liu
    • 1
    • 2
  • Cheng Cheng
    • 1
    • 2
  • Huai-Bi Chen
    • 1
    • 2
  1. 1.Department of Engineering PhysicsTsinghua UniversityBeijingChina
  2. 2.Key Laboratory of Particle and Radiation Imaging of Ministry of EducationTsinghua UniversityBeijingChina
  3. 3.Northwest Institute of Nuclear TechnologyXi’anChina

Personalised recommendations