Advertisement

Journal of Plant Diseases and Protection

, Volume 126, Issue 4, pp 307–318 | Cite as

UAV-based multispectral imagery for fast Citrus Greening detection

  • Farzaneh DadrasJavanEmail author
  • Farhad Samadzadegan
  • Seyed Hossein Seyed Pourazar
  • Haidar Fazeli
Original Article
  • 28 Downloads

Abstract

Considering the variation in spectral response of plants due to unhealthiness effects, this study utilizes multispectral imaging to detect Greening disease of citrus trees. Low altitude multispectral images acquired in five discrete bands of R, G, B, Red Edge, and NIR by an imaging camera embedded on an unmanned aerial vehicle. Image features including 16 vegetation indices and 5 bands from spectral images are extracted. Support vector machine (SVM) used to classify the images using generated features in two steps. First, for determining trees from non-trees objects and then based on the output, healthy and diseased trees are classified. The obtained overall classification results based on check samples are 81.75% for SVM model which demonstrates that low altitude multispectral imagery has the potential to be applied for fast detection of Greening infected trees in citrus orchards.

Keywords

Citrus Greening Multispectral imagery UAV Support vector machine Vegetation indices 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.

References

  1. Abe S (2005) Support vector machines for pattern classification, vol 53. Springer, LondonGoogle Scholar
  2. Arredondo Valdés R, Delgado Ortiz JC, Beltrán Beache M, Anguiano Cabello J, Cerna Chávez E, Rodríguez Pagaza Y, Ochoa Fuentes YM (2016) A review of techniques for detecting Huanglongbing (greening) in citrus. Can J Microbiol 62(10):803–811CrossRefGoogle Scholar
  3. Broge NH, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76(2):156–172CrossRefGoogle Scholar
  4. Calderón R, Navas-Cortés JA, Lucena C, Zarco-Tejada PJ (2013) High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ 139:231–245CrossRefGoogle Scholar
  5. Cevallos-Cevallos JM, Futch DB, Shilts T, Folimonova SY, Reyes-De-Corcuera JI (2012) GC–MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiol Biochem 53:69–76CrossRefGoogle Scholar
  6. Cho MA, Skidmore AK (2006) A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ 101(2):181–193CrossRefGoogle Scholar
  7. Clemens SR (2012) Procedures for correcting Digital Camera Imagery Acquired by the AggieAir remote sensing platformGoogle Scholar
  8. Crippen RE (1990) Calculating the vegetation index faster. Remote Sens Environ 34(1):71–73CrossRefGoogle Scholar
  9. Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154(1):30–36CrossRefGoogle Scholar
  10. De Castro AI, Ehsani R, Ploetz R, Crane JH, Abdulridha J (2015) Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sens Environ 171:33–44CrossRefGoogle Scholar
  11. Deng X, Lan Y, Hong T, Chen J (2016) Citrus greening detection using visible spectrum imaging and C-SVC. Comput Electron Agric 130:177–183CrossRefGoogle Scholar
  12. Faghihi MM, Salehi M, Bagheri A, Izadpanah K (2009) First report of citrus huanglongbing disease on orange in Iran. Plant Pathol 58(4):793CrossRefGoogle Scholar
  13. Food and Agriculture Organization of the United Nations [online] (2014) Available from. http://www.fao.org/faostat/en/#data/QC. Accessed 16 Jan 2017
  14. Futch STEVE, Weingarten SHAWRON, Irey MIKE (2009) Determining HLB infection levels using multiple survey methods in Florida citrus. Proc Fla State Hort Soc 122:152–157Google Scholar
  15. Garcia-Ruiz F, Sankaran S, Maja JM, Lee WS, Rasmussen J, Ehsani R (2013) Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput Electron Agric 91:106–115CrossRefGoogle Scholar
  16. Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143(3):286–292CrossRefGoogle Scholar
  17. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298CrossRefGoogle Scholar
  18. Gitelson AA, Vina A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett 32(8):1–4CrossRefGoogle Scholar
  19. Gonzalez P, Achor D, Albrigo G (2009) Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol Mol Plant Pathol 74:76–83CrossRefGoogle Scholar
  20. Gonzalez-Dugo V, Zarco-Tejada P, Nicolás E, Nortes PA, Alarcón JJ, Intrigliolo DS, Fereres E (2013) Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agric 14(6):660–678CrossRefGoogle Scholar
  21. Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352CrossRefGoogle Scholar
  22. Izzuddin MA, Seman Idris A, Nisfariza MN, Nordiana AA, Shafri HZM, Ezzati B (2017) The development of spectral indices for early detection of Ganoderma disease in oil palm seedlings. Int J Remote Sens 38(23):6505–6527CrossRefGoogle Scholar
  23. Jordan CF (1969) Derivation of leaf-area index from quality of light on the forest floor. Ecology 50(4):663–666CrossRefGoogle Scholar
  24. Katti AR, Lee WS, Ehsani R, Yang C (2015) Band selection using forward feature selection algorithm for citrus Huanglongbing disease detection. J Biosyst Eng 40(4):417–427CrossRefGoogle Scholar
  25. Keremane ML, Ramadugu C, Rodriguez E, Kubota R, Shibata S, Hall DG, Lee RF (2015) A rapid field detection system for citrus huanglongbing associated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Prot 68:41–48CrossRefGoogle Scholar
  26. Lee WS, Ehsani R (2015) Sensing systems for precision agriculture in Florida. Comput Electron Agric 112:2–9CrossRefGoogle Scholar
  27. Li H, Lee WS, Wang K, Ehsani R, Yang C (2014) Extended spectral angle mapping (ESAM) for citrus greening disease detection using airborne hyperspectral imaging. Precision Agric 15(2):162–183CrossRefGoogle Scholar
  28. Micasense Inc (2017). https://www.micasense.com/rededge/. Accessed 16 Jan 2017
  29. Mishra A, Karimi D, Ehsani R, Albrigo LG (2011) Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease. Biosyst Eng 110(3):302–309CrossRefGoogle Scholar
  30. Motohka T, Nasahara KN, Oguma H, Tsuchida S (2010) Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens 2(10):2369–2387CrossRefGoogle Scholar
  31. Pen Uelas J, Filella I, Lloret P, Mun Oz F, Vilajeliu M (1995) Reflectance assessment of mite effects on apple trees. Int J Remote Sens 16(14):2727–2733CrossRefGoogle Scholar
  32. Qin J, Burks TF, Ritenour MA, Bonn WG (2009) Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J Food Eng 93(2):183–191CrossRefGoogle Scholar
  33. Roujean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51(3):375–384CrossRefGoogle Scholar
  34. Rouse Jr JW, Haas RH, Schell JA, Deering DW (1973) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetationGoogle Scholar
  35. Sankaran S, Ehsani R (2011) Visible-near infrared spectroscopy based citrus greening detection: evaluation of spectral feature extraction techniques. Crop Prot 30(11):1508–1513CrossRefGoogle Scholar
  36. Sankaran S, Maja JM, Buchanon S, Ehsani R (2013) Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques. Sensors 13(2):2117–2130CrossRefGoogle Scholar
  37. Sarkar SK, Das J, Ehsani R, Kumar V (2016) Towards autonomous phytopathology: outcomes and challenges of citrus greening disease detection through close-range remote sensing. In: 2016 IEEE international conference on robotics and automation (ICRA), IEEE, pp 5143–5148Google Scholar
  38. Shi J, Wang J, Xu Y (2011) Object-based change detection using georeferenced UAV images. Int Arch Photogramm Remote Sens Spat Inf Sci 38:177–182Google Scholar
  39. Shi Y, Huang W, Luo J, Huang L, Zhou X (2017) Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput Electron Agric 141:171–180CrossRefGoogle Scholar
  40. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354CrossRefGoogle Scholar
  41. Sripada RP, Heiniger RW, White JG, Weisz R (2005) Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agronomy J 97(5):1443–1451CrossRefGoogle Scholar
  42. Xiang H, Tian L (2011) Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst Eng 108(2):174–190CrossRefGoogle Scholar
  43. Zarco-Tejada PJ, González-Dugo V, Berni JA (2012) Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ 117:322–337CrossRefGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2019

Authors and Affiliations

  • Farzaneh DadrasJavan
    • 1
    Email author
  • Farhad Samadzadegan
    • 1
  • Seyed Hossein Seyed Pourazar
    • 1
  • Haidar Fazeli
    • 1
  1. 1.School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations