Advertisement

Journal of Plant Diseases and Protection

, Volume 126, Issue 4, pp 319–327 | Cite as

Culture conditions influence conidial production by the barley pathogen Ramularia collo-cygni

  • Hind SghyerEmail author
  • Michael HessEmail author
Original Article
  • 53 Downloads

Abstract

The fungus Ramularia collo-cygni is the causal agent of the Ramularia leaf spot (RLS) disease of barley (Hordeum vulgare). Despite having been described over 100 years ago, our knowledge of the life cycle and epidemic development of R. collo-cygni is limited. To learn more about its epidemiology, inoculation techniques are among the major research needs since standardised inoculation procedures must be available to mimic natural infection of the pathogen under controlled conditions. The present study was conducted to obtain an insight into various factors affecting the growth and sporulation of R. collo-cygni in axenic culture. The fungus was cultured on four different media and subjected to two light regimens to determine conditions favourable for its growth and sporulation. We showed that conidial production can be enhanced by growing R. collo-cygni on barley straw agar, a medium that mimics the plant host, under white light, or on quarter-strength potato dextrose agar supplemented with V8 juice agar under ultraviolet-C light, depending on the fungal isolate. To verify the infection potential of the spores produced in axenic culture, an inoculation trial was performed. R. collo-cygni spore-inoculated barley plants accumulated fungal biomass, demonstrating successful infection.

Keywords

Ramularia collo-cygni Airborne inoculum Sporulation Spore production Artificial inoculation 

Notes

Acknowledgments

We thank Carolin Hutter and Regina Dittebrand for their technical assistance. Special thanks goes to Prof. Dr. Ralph Hückelhoven for his critical reading of the manuscript, and to the Bavarian State Ministry of Food, Agriculture and Forestry for financial support (Project KL/12/07 and KL/08/07). We also thank Stephan Weigand from the Bavarian State Research Center for Agriculture for his fruitful discussion.

Author contributions

HS and MH conceived the experiments. HS conducted the experiments and analysed the results. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human or animal subjects.

References

  1. Ajdari Z, Ebrahimpour A, Abdul Manan M, Hamid M, Mohamad R, Ariff AB (2011) Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid state cultivation. J Biomed Biotechnol 2011:487329.  https://doi.org/10.1155/2011/487329 Google Scholar
  2. Akar T, Avci M, Dusunceli F (2004) Barley: post harvest operations. The Central Research Institute for Field Crops, Food and Agriculture Organization (FAO) of the United Nations, AnkaraGoogle Scholar
  3. Allioui N, Siah A, Brinis L, Reignault P, Halama P (2016) Identification of QoI fungicide-resistant genotypes of the wheat pathogen Zymoseptoria tritici in Algeria. Phytopathol Mediterr 55:89Google Scholar
  4. Bashi E, Rotem J (1976) Induction of sporulation of Alternaria porri f. sp. solani in vivo. Physiol Plant Pathol 8:83–90CrossRefGoogle Scholar
  5. Cavara F (1893) Über einige parasitische Pilze auf dem Getreide. Z Pflanzenkrankh 3:16–26Google Scholar
  6. Chen Y, Wang D (2005) Two convenient methods to evaluate soybean for resistance to Sclerotinia sclerotiorum. Plant Dis 89:1268–1272CrossRefGoogle Scholar
  7. Cotoras M, García C, Mendoza L (2009) Botrytis cinerea isolates collected from grapes present different requirements for conidia germination. Mycologia 101:287–295.  https://doi.org/10.3852/08-012 CrossRefGoogle Scholar
  8. Crous PW, Aptroot A, Kang J-C, Braun U, Wingfield MJ (2000) The genus Mycospharella and its anamorphs. Stud Mycol 45:107–122Google Scholar
  9. Frei P, Gindrat D (2000) Le champignon Ramularia collo-cygni provoque une forme de grillures sur les feuilles d’orge d’automne et de graminées adventices. REVUE SUISSE D AGRICULTURE 6:229–234Google Scholar
  10. Frei P, Gindro K (2015) Ramularia collo-cygni–un nouveau champignon pathogène de l’orge. Rech agron suisse 6:210–217Google Scholar
  11. Frei P, Gindro K, Richter H, Schürch S (2007) Direct-PCR detection and epidemiology of Ramularia collo-cygni associated with barley necrotic leaf spots. J Phytopathol 155:281–288CrossRefGoogle Scholar
  12. Greif P (2002) Importance of Ramularia collo-cygni for barley growers and breeders. In: Proceedings of the 2nd international workshop on barley leaf blights, pp 7–11Google Scholar
  13. Harvey I (2002) Epidemiology and control of leaf and awn spot of barley caused by Ramularia collo-cygni. N Z Plant Prot 55:331–335Google Scholar
  14. Havis N, Pastok M, Pyzalski S, Oxley S, Heilbronn T (2006) Investigating the life cycle of Ramularia collo-cygni. In: Proceedings crop protection in Northern Britain, pp 219–224Google Scholar
  15. Havis N, Nyman M, Oxley S (2014) Evidence for seed transmission and symptomless growth of Ramularia collo-cygni in barley (Hordeum vulgare). Plant Pathol 63:929–936CrossRefGoogle Scholar
  16. Havis ND et al (2015) Ramularia collo-cygni—an emerging pathogen of barley crops. Phytopathology 105:895–904.  https://doi.org/10.1094/phyto-11-14-0337-fi CrossRefGoogle Scholar
  17. Hayes LE, Sackett KE, Anderson NP, Flowers MD, Mundt CC (2016) Evidence of selection for fungicide resistance in Zymoseptoria tritici populations on wheat in western Oregon. Plant Dis 100:483–489CrossRefGoogle Scholar
  18. Heick TM, Justesen AF, Jørgensen LN (2017) Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic region—a status. Eur J Plant Pathol.  https://doi.org/10.1007/s10658-017-1216-7 Google Scholar
  19. Hosseyni-Moghaddam M, Soltani J (2013) An investigation on the effects of photoperiod, aging and culture media on vegetative growth and sporulation of rice blast pathogen Pyricularia oryzae. Prog Biol Sci 3:135–143Google Scholar
  20. Huss H, Liebermann B, Miethbauer S (2005) Eine erstzunehmende Krankheit auch bei Hafer und Weizen: Weitere Ausbreitung der Sprenkelkrankheit. Der Pflanzenartz 9–10:8–10Google Scholar
  21. Kamoun S, van West P, Vleeshouwers VG, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1425CrossRefGoogle Scholar
  22. Koudela M, Novotný Č (2016) Influence of cultivars and seed thermal treatment on the development of fungal pathogens in carrot and onion plants. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 64:1181–1189CrossRefGoogle Scholar
  23. Leiva-Mora M, Alvarado-Capó Y, Acosta-Suárez M, Cruz-Martín M, Sánchez C, Roque-Morales B (2008) Enhanced sporulation, morphological and pathogenic characterization of Mycosphaerella fijiensis, causal agent of Musa Black leaf streak. Centro Agrícola 35:33–39Google Scholar
  24. Lukens R (1963) Photo-inhibition of sporulation in Alternaria solani. Am J Bot 50:720–724CrossRefGoogle Scholar
  25. Lukens R (1965) Reversal by red light of blue light inhibition of sporulation in Alternaria solani, vol 55. American Phytopathological Society, St PaulGoogle Scholar
  26. Makepeace JC, Havis ND, Burke JI, Oxley SJP, Brown JKM (2008) A method of inoculating barley seedlings with Ramularia collo-cygni. Plant Pathol 57:991–999.  https://doi.org/10.1111/j.1365-3059.2008.01892.x CrossRefGoogle Scholar
  27. Matsumura H et al (2003) Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci 100:15718–15723.  https://doi.org/10.1073/pnas.2536670100 CrossRefGoogle Scholar
  28. McCallan S, Chan SY (1944) Inducing sporulation of Alternaria solani in culture. Contrib Boyce Thompson Inst 13:323–336Google Scholar
  29. Moreno M, Stenglein S, Balatti P, Perelló A (2008) Pathogenic and molecular variability among isolates of Pyrenophora tritici-repentis, causal agent of tan spot of wheat in Argentina. Eur J Plant Pathol 122:239–252CrossRefGoogle Scholar
  30. Newton AC, Fitt BD, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe—plant interactions. Trends Microbiol 18:365–373CrossRefGoogle Scholar
  31. Ramsey GB, Bailey AA (1930) Effects of ultra-violet radiation upon sporulation in macrosporium and fusarium. Bot Gaz 89:113–136.  https://doi.org/10.1086/334040 CrossRefGoogle Scholar
  32. Raymond P, Bockus W, Norman B (1985) Tan spot of winter wheat: procedures to determine host response. Phytopathology 75:686–690CrossRefGoogle Scholar
  33. Sachs E (2002) A ‘new’ leaf spot disease of barley caused by Ramularia collo-cygni: description, diagnosis and comparison with other leaf spots. In: Meeting the challenges of barley blights. Proceedings of the second international workshop on barley leaf blights, pp 365–369Google Scholar
  34. Sachs E (2006) The history of research into Ramularia leaf spot on barley. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 58:186Google Scholar
  35. Salamati S, Reitan L (2006) Ramularia collo-cygni on spring barley, an overview of its biology and epidemiology. In: Proceedings 1st European Ramularia workshop, pp 19–35Google Scholar
  36. Soltani J, Haghighi MY-P, Nazeri S (2014) Light, temperature, and aging dependent vegetative growth and sporulation of Colletotrichum gloeosporioides on different culture media. J Med Plants Res 8:208–216CrossRefGoogle Scholar
  37. Stabentheiner E, Minihofer T, Huss H (2009) Infection of barley by Ramularia collo-cygni: scanning electron microscopic investigations. Mycopathologia 168:135–143.  https://doi.org/10.1007/s11046-009-9206-8 CrossRefGoogle Scholar
  38. Stam R, Sghyer H, Münsterkötter M, Pophaly S, Tellier A, Güldener U, Hückelhoven R, Hess M (2017) The evolutionary history of the current global Ramularia collo-cygni epidemic. bioRxiv.  https://doi.org/10.1101/215418 Google Scholar
  39. Taylor JM, Paterson LJ, Havis ND (2010) A quantitative real-time PCR assay for the detection of Ramularia collo-cygni from barley (Hordeum vulgare). Lett Appl Microbiol 50:493–499.  https://doi.org/10.1111/j.1472-765X.2010.02826.x CrossRefGoogle Scholar
  40. Van der Waals J, Korsten L, Aveling T (2001) A review of early blight of potato. Afr Plant Prot 7:91–102Google Scholar
  41. Vasileva K, Malchev S, Zhivondov A (2016) Sensitivity of promising cherry hybrids and new cultivars to economically important fungal diseases. Agric Sci Technol 8:197–200Google Scholar
  42. Vathakos M, Walters H (1979) Production of conidia by Cercospora kikuchii in culture. Phytopathology 69:832–833CrossRefGoogle Scholar
  43. Walters DR, Havis ND, Oxley SJP (2008) Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiol Lett 279:1–7.  https://doi.org/10.1111/j.1574-6968.2007.00986.x CrossRefGoogle Scholar
  44. Wu Y-X, von Tiedemann A (2002) Evidence for oxidative stress involved in physiological leaf spot formation in winter and spring barley. Phytopathology 92:145–155CrossRefGoogle Scholar
  45. Zamani-Noor N (2011) Studies on Ramularia Leaf Spots on Barley-Resistance Phenotyping, Epidemiology and Pathogenicity. Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen. http://hdl.handle.net/11858/00-1735-0000-0001-BC13-F. Accessed 22 Apr 2019

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2019

Authors and Affiliations

  1. 1.Phytopathology, TUM School of Life Sciences WeihenstephanTechnische Universität MünchenFreisingGermany

Personalised recommendations