Advertisement

Field evaluation of the impact of Sahlbergella singularis Haglund infestations on the productivity of different Theobroma cacao L. genotypes in the Southern Cameroon

  • R. J. MahobEmail author
  • R. Feudjio Thiomela
  • L. Dibog
  • R. Babin
  • Y. G. Fotso Toguem
  • H. Mahot
  • L. Baleba
  • P. A. Owona Dongo
  • C. F. Bilong Bilong
Original Article

Abstract

Mirids (Sahbergella singularis and/or Distantiella theobroma) are the major pests of cacao farms in Africa. Cocoa production losses due to these species have been widely documented in West Africa. However, their impact on cocoa production is unknown in Central Africa, especially in Cameroon. Moreover, no data are available on the threshold level of fruits tolerance to mirid attacks. For these reasons, we assessed the effect of S. singularis on the productivity of ten cacao genotypes as well as the threshold number of the lethal feeding punctures to fruits under a randomized experimental design. Observations were made on three categories of fruits (cherelle, immature and mature/ripe). A control trial was also set up per batch. The overall results showed that 68.0% and 0.4% of fruits aborted, respectively, in mirid and control trials. The percentages of aborted fruits were significantly (p < 5%) different between cacao genotypes and ranged from 20 to 100%. Bonferroni test revealed six homogenous groups for cacao genotypes susceptibility to mirid attacks; SNK52 proved to be most tolerant/resistant, whereas two genotypes (UPA138 and SNK67) revealed more sensitive. In contrast, six genotypes (SNK07, IMC60 × SNK417, T60/887 × PA7, T79/501 × SNK479, UPA143 × ICS84, UPA143 × NA33) displayed similar sensitivity to mirid attacks. ANOVA showed that the threshold tolerance of tested fruits, expressed by the mean numbers of lethal feeding punctures, to S. singularis attacks was comparable between cacao genotypes. This new quantitative database improves our knowledge on the (i) threshold tolerance of fruits to S. singularis attacks and (ii) economic impact of this pest on cocoa production in Cameroon.

Keywords

Cacao genotypes Threshold tolerance Productivity Effect Infestations S. singularis 

Notes

Acknowledgements

We thank the Institute of Agricultural Research for Development (IRAD)—Program of stimulating plants for providing financial via the investment public funds and logistic supports. Support from Audrey Valteri VOULA was especially valuable. We also thank the staff of IRAD, Nkoemvone, especially Damien EYENET and Irène NKOTTO for logistic and help for field data collections.

Funding

The manuscript has never been submitted to another journal for publication (partially or fully) in any other form or language. Our work was funded by the Agricultural Research Institute for Development (IRAD)—Through Stimulating Plants/Plant Protection using the National Public Investment Funds of Cameroon. In addition, our work presents no conflict of interests, both financially and scientifically.

Compliance with ethical standards

Conflict of interest

All authors agree that paper be published for the benefit of the scientific community and farmers and other stakeholders in the cocoa sector.

References

  1. Adu-Acheampong R, Archer S, Leather S (2012) Resistance to dieback disease caused by Fusarium and Lasiodiplodia species in cacao (Theobroma cacao L.) genotypes. Exp Agric 48:85–98.  https://doi.org/10.1017/S1742758413000441 CrossRefGoogle Scholar
  2. Adu-Acheampong R, Jiggins J, van Huis A et al (2014) The cocoa mirid (Hemiptera: Miridae) problem: evidence to support new recommendations on the timing of insecticide application on cocoa in Ghana. Int J Trop Insect Sci 34:58–71.  https://doi.org/10.1017/S1742758413000441 CrossRefGoogle Scholar
  3. Anikwe JC (2009) Evaluation of Field Damage and Chemical Control of Outbreak of Sahlbergella Singularis Haglund in a Cocoa Plantation in Ibadan, Nigeria. Am Eurasian J Sustain Agric 3:19–23Google Scholar
  4. Anikwe JC, Otuonye HA (2015) Dieback of cocoa (Theobroma cacao L.) plant tissues caused by the brown cocoa mirid Sahlbergella singularis Haglund (Hemiptera: Miridae) and associated pathogenic fungi. Int J Trop Insect Sci 35:193–200.  https://doi.org/10.1017/S1742758415000120 CrossRefGoogle Scholar
  5. Anikwe JC, Omoloye AA, Aikpokpodion PO, Okelana FA, Eskes AB (2009) Evaluation of resistance in selected cocoa genotypes to the brown cocoa mirid, Sahlbergella singularis Haglund in Nigeria. Crop Prot 28:350–355.  https://doi.org/10.1016/j.cropro.2008.11.014 CrossRefGoogle Scholar
  6. Anikwe JC, Omoloye AA, Okelana FA (2010) The population dynamics of the brown cocoa mirid, Sahlbergella singularis Haglund in Ibadan, Nigeria. Afri J Food Agri Nutr Dev 10:2772–2783Google Scholar
  7. Babin R (2018) Pest management in organic farming. In: Vacante V, Kreiter S (eds) Handbook of pest management in organic farming. CAB-International, Wallingford, pp 502–518CrossRefGoogle Scholar
  8. Babin R, Bisseleua BHD, Dibog L, Lumaret JP (2008) Rearing method and life table data for the cocoa mirid bug Sahlbergella singularis Haglund (Hemiptera: Miridae). J Appl Entomol 132:366–374.  https://doi.org/10.1111/j.1439-0418.2008.01273.x CrossRefGoogle Scholar
  9. Babin R, Ten Hoopen M, Cilas C, Enjalric F, Yede, Gendre P, Lumaret JP (2010) The impact of shade on the spatial distribution of Sahlbergella singularis Hagl. (Hemiptera: Miridae) in traditional cocoa agroforests. Agric Forest Entomol 12:69–79.  https://doi.org/10.1111/j.1461-9563.2009.00453.x CrossRefGoogle Scholar
  10. Babin R, Anikwe JC, Dibog L, Lumaret JP (2011) Effects of cocoa tree phenology and canopy microclimate on the performance of the mirid bug Sahlbergella singularis. Entomol Exp Appl 141:25–34.  https://doi.org/10.1111/j.1570-7458.2011.01164.x CrossRefGoogle Scholar
  11. Bisseleua HBD, Yede, Vidal S (2011) Dispersion models and sampling of cacao mirid bug Sahlbergella singularis (Hemiptera: Miridae) on Theobroma cacao in Southern Cameroon. Environ Entomol 40:111–119.  https://doi.org/10.1603/EN09101 CrossRefGoogle Scholar
  12. Bruneau de Miré P (1977) La dynamique des populations de Mirides et ses implications. In: Lavabre EM (ed) Les Mirides du Cacaoyer. Maisonneuve et Larose, Paris, pp 171–186Google Scholar
  13. Crowdy SH (1947) Observations on the pathogenicity of Calonectriarigidiuscula(Berk & Br.) Sacc. on Theobroma cacao L. Ann Appl Biol 34:45–59.  https://doi.org/10.1111/j.1744-7348.1947.tb06342.x CrossRefGoogle Scholar
  14. Decazy B, Essono B (1979) Tests de contrôle d’infestation et traitements anti-mirides. Café Cacao Thé 23:35–42Google Scholar
  15. Entwistle PF (1972) Pests of cocoa. Longman Group Ltd, Harlow, p 779Google Scholar
  16. Idowu OL (1989) Control of economic Insect pests of cocoa. Progress in tree crop research, 2nd edn. CRIN, Ibadan, pp 152–165Google Scholar
  17. Lavabre EM (1970) Insectes nuisibles des cultures tropicales (cacaoyer, caféier, colatier, poivrier, théier). Edition G.P. Maisonneuve et Larose, Paris, p 276Google Scholar
  18. Lavabre EM (1977) Les mirides du cacaoyer. Edition G.P. Maisonneuve et Larose, Paris, p 366Google Scholar
  19. Lavabre EM, Decelle J, Debord P (1963) Etude de l’évolution régionale et saisonnière des populations de Mirides (Capsides) en Côte d’Ivoire. Café Cacao Thé 7:267–287Google Scholar
  20. Lotodé R (1969) Etude statistique de l’évolution d’une population de Mirides. Café Cacao Thé 13:216–220Google Scholar
  21. Mahob RJ, Babin R, Ten Hoopen GM, Dibog L, Yede, Hall D, Bilong Bilong CF (2011) Field evaluation of synthetic sex pheromone traps for the cocoa mirid Sahlbergella singularis (Hemiptera: Miridae). Pest Manag Sci 67:672–676.  https://doi.org/10.1002/ps.2107 CrossRefGoogle Scholar
  22. Mahob RJ, Ndoumbè-Nkeng M, Ten Hoopen GM, Dibog L, Nyassé S, Rutherford M, Mbenoun M, Babin R, Amang A, Mbang J, Yede, Bilong Bilong CF (2014) Pesticides use in cocoa sector in Cameroon: characterization of supply source, nature of actives ingredients, fashion and reasons for their utilization. Int J Biol Chem Sci 8:1976–1989.  https://doi.org/10.4314/ijbcs.v8i5.3 CrossRefGoogle Scholar
  23. Mahob RJ, Baleba L, Yede Dibog L, Cilas C, Bilong Bilong CF, Babin R (2015) Spatial distribution of Sahlbergella singularis Hagl. (Hemiptera: Miridae) populations and their damage in unshaded young cacao-based agroforestry systems. Int J Plant Anim Environ Sci 5:121–131Google Scholar
  24. Mahob RJ, Nsoga Etam PB, Dibog L, Babin R, Voula AV, Begoude D, Fotso Toguem YG, Baleba L, Owona Ndongo PA, Bilong Bilong CF (2018) Assessment of the effect of cocoa mosquito mirid true bug, Helopeltis sp. (Hemiptera: Miridae) on the cocoa (Theobroma cocoa L.) production in Cameroon (Central Africa). Int J Biol Chem Sci 12:1865–1875.  https://doi.org/10.4314/ijbcs.v12i4.27 CrossRefGoogle Scholar
  25. N’Guessan KE, N’Goran JAK, Eskes AB (2008) Resistance of cacao (Theobroma cacao L.) to Sahlbergella singularis (Hemiptera: Miridae): investigation of antixenosis, antibiosis and tolerance. Int J Trop Insect Sci 28:201–210.  https://doi.org/10.1017/S1742758408184740 Google Scholar
  26. N’Guessan KF, Lachenaud Ph, Eskes AB (2010) Antixenosis as a mechanism of cocoa resistance to the cocoa mirid, Sahlbergella singularis (Hemiptera: Miridae). J Appl Biosci 36:2333–2339Google Scholar
  27. Ndoumbe-Nkeng M, Cilas C, Nyemb E, Nyasse S, Bieysse D, Flori A, Sache I (2004) Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Prot 23:415–424.  https://doi.org/10.1016/j.cropro.2003.09.010 CrossRefGoogle Scholar
  28. Niemenak N, Cilas C, Rohsius C, Bleiholder H, Meier U, Lieberei R (2010) Phenological growth stages of cacao plants (Theobroma sp.): codification and description according to the BBCH scale. Ann Appl Biol 156:13–24.  https://doi.org/10.1111/j.1744-7348.2009.00356.x CrossRefGoogle Scholar
  29. Nwana IE, Youdeowei A (1978) The spatial distribution of three species of heteroptera in a cocoa farm in Ibadan, Nigeria. Niger J Entomol 3:27–33Google Scholar
  30. Ojelade KTM, Anikwe JC, Idowu OL (2005) Comparative evaluation of the miridicidal efficacy of some insecticides for the control of the brown cocoa mirid, Sahlbergella singularis, in Nigeria. Appl Trop Agric 10:46–53Google Scholar
  31. Padi B (1997) Prospects for the control of cocoa capsids –alternatives to chemical control, pp. 28–36. In: Proceedings of the 1st international cocoa pests and diseases seminar. 6–10 November 1995, Accra, GhanaGoogle Scholar
  32. Padi B, Owusu GK (1998) Towards an integrated pest management for sustainable cocoa production in Ghana. In: Proceedings of the 1st sustainable Cocoa Workshop, Panama, pp 7–15Google Scholar
  33. Sounigo O, Coulibaly N, Brun L, N’Goran JAK, Cilas C, Eskes AB (2003) Evaluation of resistance of Theobroma cacao L. to mirids in Côte d’Ivoire: results of comparative progeny trials. Crop Prot 22:615–621.  https://doi.org/10.1016/S0261-2194(02)00244-2 CrossRefGoogle Scholar
  34. Statistica 2011. StatisticaNeural Network Software (version 10.0). Inc.,Tulsa, Oklahoma: USAGoogle Scholar
  35. Toxopeus H (1985) Botany, types and populations. In: Wood GAR, Lass RA (eds) Cocoa. Longman Group Ltd., London, p 1137.  https://doi.org/10.1002/9780470698983.ch2 Google Scholar
  36. Varlet F, Berry D (1997) Réhabilitation de la protection phytosanitaire des cacaoyers et caféiers du Cameroun. Tome I : rapport principal. Cirad/Conseil interprofessionnel du cacao et du café. Douala, Cameroun, p 204Google Scholar
  37. Voula VA, Manga Essouma F, Messi Ambassa LM, Mahob RJ, Begoude BD (2018) Impact of mirids and fungal infestation on dieback of cocoa in Cameroon. J Entomol Zool Stud 6:240–245Google Scholar
  38. Williams G (1953) Field observations on the cacao mirids, Sahlbergella singularis Hagl. and Distantiella theobroma (Dist.), in the Gold Coast. Part I. Mirid Damage Bull Entomol Res 44:101–119.  https://doi.org/10.1017/S0007485300022987 CrossRefGoogle Scholar
  39. Williams G (1954) Field observations on the cocoa mirids, Sahlbergella singularis Hagl. and Distantiella theobroma (Dist.), in the Gold Coast. Part III. Popul Fluct Bull Entomol Res 45:723–744.  https://doi.org/10.1017/S0007485300033344 CrossRefGoogle Scholar
  40. Wood GAR, Lass RA (eds) (1989) Cocoa: tropical agricultural series. Wiley, New York, pp 265–383Google Scholar
  41. Yede (2016) Diversité des peuplements des hémiptères dans les cacaoyères de la Région du Centre Cameroun: impact économique et essai de lute biologique. Thèse de Doctorat PhD, Université de Yaoundén I, Yaoundé, p 174Google Scholar
  42. Yede, Babin R, Djieto-Lordon C, Cilas C, Dibog L, Mahob R, Bilong Bilong CF (2012) True bug (Heteroptera) impact on cocoa fruit mortality and productivity. J Econ Entomol 105:1285–1292.  https://doi.org/10.1603/EC12022 CrossRefGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2019

Authors and Affiliations

  1. 1.University of Yaoundé IYaoundéCameroon
  2. 2.Institute of Agricultural Research for Development (IRAD)YaoundéCameroon
  3. 3.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
  4. 4.Centre de Coopération Internationale En Recherche Agronomique Pour Le Développement (CIRAD), UPR BioagresseursMontpellierFrance

Personalised recommendations