Advertisement

Incorporating Health Behavior Theory into mHealth: an Examination of Weight Loss, Dietary, and Physical Activity Interventions

  • Jessica K. Salwen-DeremerEmail author
  • Alyssa S. Khan
  • Seth S. Martin
  • Breanna M. Holloway
  • Janelle W. Coughlin
Article
  • 19 Downloads

Abstract

Health behavior interventions are effective for many modifiable lifestyle behaviors. In some cases, remotely-delivered behavioral interventions, particularly those that include some form of contact with a clinician and strong behavioral strategies, have been shown to be as effective as traditional in-person interventions; they are also more flexible, disseminable, and cost-effective. With ubiquitous increases in mobile phone use, opportunities for remote delivery of health interventions (mHealth) have grown exponentially, particularly in the use of behavioral smartphone applications. Despite research suggesting that mHealth interventions can be effective at initiating and maintaining behavior changes, many mHealth interventions are not theoretically-based, and evidence-based behavioral strategies are not often adapted into the mobile format. Thus, there is a need for clear summaries of behavioral change theories and examples of theoretically driven behavioral strategies to unify and improve the field of mHealth. The authors review the existing literature on theories of behavior change, intervention, and systems for evaluating theoretical content. Specifically, the authors briefly summarize both traditional and contemporary theories of behavior change, evidence-based behavioral strategies, and the methods for evaluating the degree to which they are included in existing mHealth behavioral interventions, with an emphasis on weight loss, dietary, and physical activity interventions. Authors also include examples of integration of theory into both research and clinical practice. This research highlights the importance of incorporation of theory into behavior change interventions. The authors suggest specific theoretical considerations for the development of mHealth interventions within collaborative, interdisciplinary environments, and recommend future research areas.

Keywords

mHealth Health behavior Lifestyle Technology Weight loss Physical activity 

Notes

Funding Source

Dr. Martin – Aetna Foundation.

Compliance with Ethical Standards

Conflict of Interest

Dr. Martin is a founder of and holds equity in Corrie Health, which intends to further develop the platform. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. He has served on the scientific advisory boards of Amgen, Sanofi, Regeneron, Esperion, Novo Nordisk, Quest Diagnostics, and Akcea Therapeutics and reports grants from Apple, Google, iHealth, Nokia, the Maryland Innovation Initiative, American Heart Association, Aetna Foundation, PJ Schafer Memorial Fund, and David and June Trone Family Foundation.

References

  1. Adams, J., & White, M. (2003). Are activity promotion interventions based on the transtheoretical model effective? A critical review. British Journal of Sports Medicine, 37(2), 106–114.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.CrossRefGoogle Scholar
  3. Annesi, J. J., & Tennant, G. A. (2013). Mediation of social cognitive theory variables in the relationship of exercise and improved eating in sedentary adults with severe obesity. Psychology, Health & Medicine, 18(6), 714–724.CrossRefGoogle Scholar
  4. Appel, L. J., Clark, J. M., Yeh, H. C., Wang, N. Y., Coughlin, J. W., Daumit, G., & Brancati, F. L. (2011). Comparative effectiveness of weight-loss interventions in clinical practice. The New England Journal of Medicine, 365(21), 1959–1968. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22085317.  https://doi.org/10.1056/NEJMoa1108660.PubMedCrossRefGoogle Scholar
  5. Armstrong, M., Mottershead, T., Ronksley, P., Sigal, R., Campbell, T., & Hemmelgarn, B. (2011). Motivational interviewing to improve weight loss in overweight and/or obese patients: A systematic review and meta-analysis of randomized controlled trials. Obesity Reviews, 12, 709–723.  https://doi.org/10.1111/j.1467-789X.2011.00892.x.CrossRefPubMedGoogle Scholar
  6. Azar, K. M., Lesser, L. I., Laing, B. Y., Stephens, J., Aurora, M. S., Burke, L. E., & Palaniappan, L. P. (2013). Mobile applications for weight management: Theory-based content analysis. American Journal of Preventive Medicine, 45(5), 583–589.  https://doi.org/10.1016/j.amepre.2013.07.005.CrossRefPubMedGoogle Scholar
  7. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall, Inc.Google Scholar
  8. Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.Google Scholar
  9. Bandura, A. (1998). Health promotion from the perspective of social cognitive theory. Psychology and Health, 13(4), 623–649.CrossRefGoogle Scholar
  10. Bennett, G. G., & Glasgow, R. E. (2009). The delivery of public health interventions via the internet: Actualizing their potential. Annual Review of Public Health, 30, 273–292.PubMedCrossRefGoogle Scholar
  11. Bish, A., Sutton, S., & Golombok, S. (2000). Predicting uptake of a routine cervical smear test: A comparison of the health belief model and the theory of planned behaviour. Psychology and Health, 15(1), 35–50.CrossRefGoogle Scholar
  12. Brassington, G. S., Atienza, A. A., Perczek, R. E., DiLorenzo, T. M., & King, A. C. (2002). Intervention-related cognitive versus social mediators of exercise adherence in the elderly. American Journal of Preventive Medicine, 23(2), 80–86.PubMedCrossRefGoogle Scholar
  13. Buchan, D. S., Ollis, S., Thomas, N. E., & Baker, J. S. (2012). Physical activity behaviour: An overview of current and emergent theoretical practices. Journal of Obesity, 2012, 1–11.CrossRefGoogle Scholar
  14. Carpenter, C. J. (2010). A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Communication, 25(8), 661–669.PubMedCrossRefGoogle Scholar
  15. Cesario, J., Higgins, E. T., & Scholer, A. A. (2008). Regulatory fit and persuasion: Basic principles and remaining questions. Social and Personality Psychology Compass, 2(1), 444–463.CrossRefGoogle Scholar
  16. Chung, L. M. Y., & Fong, S. S. M. (2015). Predicting actual weight loss: A review of the determinants according to the theory of planned behaviour. Health Psychology Open, 2(1), 2055102914567972.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cole-Lewis, H., & Kershaw, T. (2010). Text messaging as a tool for behavior change in disease prevention and management. Epidemiologic Reviews, 32(1), 56–69.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cowan, L. T., Van Wagenen, S. A., Brown, B. A., Hedin, R. J., Seino-Stephan, Y., Hall, P. C., & West, J. H. (2012). Apps of steel: Are exercise apps providing consumers with realistic expectations? A content analysis of exercise apps for presence of behavior change theory. Health Education & Behavior, 40(2), 133–139.  https://doi.org/10.1177/1090198112452126.CrossRefGoogle Scholar
  19. Davies, C. A., Spence, J. C., Vandelanotte, C., Caperchione, C. M., & Mummery, W. K. (2012). Meta-analysis of internet-delivered interventions to increase physical activity levels. International Journal of Behavioral Nutrition and Physical Activity, 9, 1), 1.CrossRefGoogle Scholar
  20. DeKoekkoek, T., Given, B., Given, C. W., Ridenour, K., Schueller, M., & Spoelstra, S. L. (2015). mHealth SMS text messaging interventions and to promote medication adherence: An integrative review. Journal of Clinical Nursing, 24(19–20), 2722–2735.PubMedCrossRefGoogle Scholar
  21. Diabetes Prevention Program Research Group, et al. (2009). 10-year follow-up of diabetes incidence and weight loss in the diabetes Prevention program outcomes study. The Lancet, 374(9702), 1677–1686.  https://doi.org/10.1016/S0140-6736(09)61457-4.
  22. Direito, A., Dale, L. P., Shields, E., Dobson, R., Wittaker, R., & Maddison, R. (2014). Do physical activity and dietary smartphone applications incorporate evidence-based behaviour change techniques? BMC Public Health, 14.Google Scholar
  23. Doshi, A., Patrick, K., Sallis, J. F., & Calfas, K. (2003). Evaluation of Physical Activity Web Sites for Use of Behavior Change Theories. Annals of Behavioral Medicine, 25(2), 102–111.CrossRefGoogle Scholar
  24. Draucker, C. B., Martsolf, D. S., Crane, S., Romero, L., & McCord, A. L. (2017). Designing an internet intervention for emerging adults who experience troubled relationships. Archives of Psychiatric Nursing, 31(3), 296–301.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Duggan, M. (2013). Cell phone activities 2013. Cell. Google Scholar
  26. Duncan, T. E., & McAuley, E. (1993). Social support and efficacy cognitions in exercise adherence: A latent growth curve analysis. Journal of Behavioral Medicine, 16(2), 199–218.PubMedCrossRefGoogle Scholar
  27. Fanning, J., Opina, M. T., Leng, I., Lyles, M. F., Nicklas, B. J., & Rejeski, W. J. (2018). Empowered with movement to prevent Obesity & Weight Regain (EMPOWER): Design and methods. Contemporary Clinical Trials, 78, 35–42.CrossRefGoogle Scholar
  28. Fischer, H. H., Fischer, I. P., Pereira, R. I., Furniss, A. L., Rozwadowski, J. M., Moore, S. L., & Havranek, E. P. (2016). Text message support for weight loss in patients with prediabetes: A randomized clinical trial. Diabetes Care, dc152137.Google Scholar
  29. Fogg, B. (2003). The ethics of persuasive technology. In Persuasive technology: Using computers to change what we think and do. San Francisco, CA: Morgan Kauffmann.CrossRefGoogle Scholar
  30. Fogg, B. (2009). A Behavior Model for Persuasive Design. Paper presented at the proceedings of the 4th international conference on persuasive technology. Claremont, CA.Google Scholar
  31. Fogg, B. (2019). Fogg Behavior Model. Retrieved from https://www.behaviormodel.org/prompts Google Scholar
  32. Free, C., Phillips, G., Felix, L., Galli, L., Patel, V., & Edwards, P. (2010). The effectiveness of M-health technologies for improving health and health services: A systematic review protocol. BMC Research Notes, 3, 1), 1.CrossRefGoogle Scholar
  33. French, D. P., Darker, C. D., Eves, F. F., & Sniehotta, F. F. (2013). The systematic development of a brief intervention to increase walking in the general public using an “extended” theory of planned behavior. Journal of Physical Activity & Health, 10(7), 94.CrossRefGoogle Scholar
  34. Gardner, R. E., & Hausenblas, H. A. (2006). Exercise and diet determinants of overweight women participating in an exercise and diet program: A prospective examination of the theory of planned behavior. Women & Health, 42(4), 37–62.CrossRefGoogle Scholar
  35. Glanz, K., & Bishop, D. B. (2010). The role of behavioral science theory in development and implementation of public health interventions. Annual Review of Public Health, 31, 399–418.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Haapala, I., Barengo, N. C., Biggs, S., Surakka, L., & Manninen, P. (2009). Weight loss by mobile phone: A 1-year effectiveness study. Public Health Nutrition, 12(12), 2382–2391.  https://doi.org/10.1017/S1368980009005230.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Head, K. J., Noar, S. M., Iannarino, N. T., & Harrington, N. G. (2013). Efficacy of text messaging-based interventions for health promotion: A meta-analysis. Social Science & Medicine, 97, 41–48.CrossRefGoogle Scholar
  38. Higgins, E. T. (2000). Making a good decision: Value from fit. American Psychologist, 55(11), 1217–1230.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Janz, N. K., & Becker, M. H. (1984). The health belief model: A decade later. Health Education Quarterly, 11(1), 1–47.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 47, 263–291.CrossRefGoogle Scholar
  41. Kelders, S. M., Kok, R. N., Ossebaard, H. C., & Van Gemert-Pijnen, J. E. W. C. (2012). Persuasive system design does matter: A systematic review of adherence to web-based interventions. Journal of Medical Internet Research, 14(6), e152. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510730/. doi: https://doi.org/10.2196/jmir.2104.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Klasnja, P., Hekler, E. B., Shiffman, S., Boruvka, A., Almirall, D., Tewari, A., & Murphy, S. (2015). Micro-randomized trials: An experimental Design for Developing Just-in-Time Adaptive Interventions. Health Psychology, 3(0), 1220–1228.  https://doi.org/10.1037/hea0000305.CrossRefGoogle Scholar
  43. Krebs, P., Prochaska, J. O., & Rossi, J. S. (2010). A meta-analysis of computer-tailored interventions for health behavior change. Preventive Medicine, 51(3), 214–221.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Krukowski, R. A., West, D. S., & Harvey-Berino, J. (2009). Recent advances in internet-delivered, evidence-based weight control programs for adults. Journal of Diabetes Science and Technology, 3(1), 184–189.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lee, H. Y., Koopmeiners, J. S., Rhee, T. G., Raveis, V. H., & Ahluwalia, J. S. (2014). Mobile phone text messaging intervention for cervical cancer screening: Changes in knowledge and behavior pre-post intervention. Journal of Medical Internet Research, 16(8), e196.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., & Andrews, K. G. (2013). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, 380(9859), 2224–2260.CrossRefGoogle Scholar
  47. Lister, C., West, J. H., Cannon, B., Sax, T., & Brodegard, D. (2014). Just a fad? Gamification in health and fitness apps. JMIR Serious Games, 2(2), e9.  https://doi.org/10.2196/games.3413.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Look AHEAD Research Group & Wing, R. R. (2010). Long term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes: Four year results of the look AHEAD trial. Archives of Internal Medicine, 170(17), 1566–1575.Google Scholar
  49. Lundahl, B., Moleni, T., Burke, B. L., Butters, R., Tollefson, D., Butler, C., & Rollnick, S. (2013). Motivational interviewing in medical care settings: A systematic review and meta-analysis of randomized controlled trials. Patient Education and Counseling, 93(2), 157–168.  https://doi.org/10.1016/j.pec.2013.07.012.CrossRefPubMedGoogle Scholar
  50. Maddux, J. E., & Rogers, R. W. (1983). Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. Journal of Experimental Social Psychology, 19(5), 469–479.CrossRefGoogle Scholar
  51. Marshall, S. J., & Biddle, S. J. (2001). The transtheoretical model of behavior change: A meta-analysis of applications to physical activity and exercise. Annals of Behavioral Medicine, 23(4), 229–246.PubMedCrossRefGoogle Scholar
  52. Mastellos, N., Gunn, L. H., Felix, L. M., Car, J., & Majeed, A. (2014). Transtheoretical model stages of change for dietary and physical exercise modification in weight loss management for overweight and obese adults. The Cochrane Library, Transtheoretical model stages of change for dietary and physical exercise modification in weight loss management for overweight and obese adults.Google Scholar
  53. McConnon, A., Raats, M., Astrup, A., Bajzová, M., Handjieva-Darlenska, T., Lindroos, A. K., & Pfeiffer, A. (2012). Application of the theory of planned behaviour to weight control in an overweight cohort. Results from a pan-European dietary intervention trial (DiOGenes). Appetite, 58(1), 313–318.PubMedCrossRefGoogle Scholar
  54. Michie, S., van Stralen, M. M., & West, R. (2011). The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6(1).  https://doi.org/10.1186/1748-5908-6-42.
  55. Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., & Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Annals of Behavioral Medicine, 46, 81–95.  https://doi.org/10.1007/s12160-013-9486-6.CrossRefPubMedGoogle Scholar
  56. Middelweerd, A., Mollee, J. S., van der Wal, C. N., Brug, J., & te Velde, S. J. (2014). Apps to promote physical activity among adults: A review and content analysis. International Journal of Behavioral Nutrition and Physical Activity, 11.Google Scholar
  57. Militello, L., Melnyk, B. M., Hekler, E. B., Small, L., & Jacobson, D. (2016). Automated behavioral text messaging and face-to-face intervention for parents of overweight or obese preschool children: Results from a pilot study. JMIR mHealth and uHealth, 4(1), e21.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mohr, D. C., Schueller, S. M., Montague, E., Burns, M. N., & Rashidi, P. (2014). The behavioral intervention technology model: An integrated conceptual and technological framework for eHealth and mHealth interventions. Journal of Medical Internet Research, 16(6), e146.  https://doi.org/10.2196/jmir.3077.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mokdad, A. H., Marks, J. S., Stroup, D. F., & Gerberding, J. L. (2004). Actual causes of death in the United States, 2000. Jama, 291(10), 1238–1245.PubMedCrossRefGoogle Scholar
  60. Morton, K., Sutton, S., Hardeman, W., Troughton, J., Yates, T., Griffin, S., & Eborall, H. (2015). A text-messaging and pedometer program to promote physical activity in people at high risk of type 2 diabetes: The development of the PROPELS follow-on support program. JMIR mHealth and uHealth, 3(4), e105.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., & Abdalla, S. (2013). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, (9859), 380, 2197–2223.Google Scholar
  62. Naslund, J., Aschbrenner, K., Marsch, L., & Bartels, S. (2016). The future of mental health care: Peer-to-peer supportand social media. Epidemiology and Psychiatric Sciences, 25, 113–122.  https://doi.org/10.1017/S2045796015001067.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Neipp, M., Quiles, M., Leon, E., Tirado, S., & Rodriguez-Marin, J. (2015). Applying the theory of planned behavior: Which factors influence on doing physical exercise? Atencion primaria/Sociedad Espanola de Medicina de Familia y Comunitaria, 47(5), 287–293.CrossRefGoogle Scholar
  64. Nguyen, M. N., Potvin, L., & Otis, J. (1997). Regular exercise in 30-to 60-year-old men: Combining the stages-of-change model and the theory of planned behavior to identify determinants for targeting heart health interventions. Journal of Community Health, 22(4), 233–246.PubMedCrossRefGoogle Scholar
  65. Noar, S. M., Benac, C. N., & Harris, M. S. (2007). Does tailoring matter? Meta-analytic review of tailored print health behavior change interventions. Psychological Bulletin, 133(4), 673–693.  https://doi.org/10.1037/0033-2909.133.4.673.CrossRefPubMedGoogle Scholar
  66. Noar, S. M., Chabot, M., & Zimmerman, R. S. (2008). Applying health behavior theory to multiple behavior change: Considerations and approaches. Preventive Medicine, 46(3), 275–280.PubMedCrossRefGoogle Scholar
  67. Norris, S. L., Engelgau, M. M., & Narayan, K. V. (2001). Effectiveness of self-management training in type 2 diabetes a systematic review of randomized controlled trials. Diabetes Care, 24(3), 561–587.PubMedCrossRefGoogle Scholar
  68. O’Reilly, G. A., & Spruijt-Metz, D. (2013). Current mHealth technologies for physical activity assessment and promotion. American Journal of Preventive Medicine, 45(4), 501–507.PubMedPubMedCentralCrossRefGoogle Scholar
  69. O'Halloran, P. D., Blackstock, F., Shields, N., Holland, A., Iles, R., Kingsley, M., & Taylor, N. F. (2014). Motivational interviewing to increase physical activity in people with chronic health conditions: A systematic review and meta-analysis. Clinical Rehabilitation, 28(1), 1159–1171.  https://doi.org/10.1177/0269215514536210.CrossRefPubMedGoogle Scholar
  70. Oinas-Kukkonen, H., & Harjumaa , M. (2008). A Systematic Framework for Designing and Evaluating Persuasive Systems paper presented at the international conference on persuasive technology.Google Scholar
  71. Olander, E. K., Fletcher, H., Williams, S., Atkinson, L., Turner, A., & French, D. P. (2013). What are the most effective techniques in changing obese individuals’ physical activity self-efficacy and behaviour: A systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 1.CrossRefGoogle Scholar
  72. Painter, J. E., Borba, C. P., Hynes, M., Mays, D., & Glanz, K. (2008). The use of theory in health behavior research from 2000 to 2005: A systematic review. Annals of Behavioral Medicine, 35(3), 358–362.PubMedCrossRefGoogle Scholar
  73. Palmeira, A. L., Teixeira, P. J., Branco, T. L., Martins, S. S., Minderico, C. S., Barata, J. T., & Sardinha, L. B. (2007). Predicting short-term weight loss using four leading health behavior change theories. International Journal of Behavioral Nutrition and Physical Activity, 4(1), 1.CrossRefGoogle Scholar
  74. Park, L. G., Howie-Esquivel, J., & Dracup, K. (2014). A quantitative systematic review of the efficacy of mobile phone interventions to improve medication adherence. Journal of Advanced Nursing, 70(9), 1932–1953.  https://doi.org/10.1111/jan.12400.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Parsons, J. T., Golub, S. A., Rosof, E., & Holder, C. (2007). Motivational interviewing and cognitive-behavioral intervention to improve HIV medication adherence among hazardous drinkers: A randomized controlled trial. Journal of Acquired Immune Deficiency Syndromes (1999), 46(4), 443–450.CrossRefGoogle Scholar
  76. Patrick, K., Raab, F., & Norman, G. J. (2009). A text message–based intervention for weight loss: Randomized controlled trial. Journal of Medical Internet Research, 11(1), e1.  https://doi.org/10.2196/jmir.1100.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Payne, N., Jones, F., & Harris, P. R. (2004). The role of perceived need within the theory of planned behaviour: A comparison of exercise and healthy eating. British Journal of Health Psychology, 9(4), 489–504.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Pellegrini, C. A., Verba, S. D., Otto, A. D., Helsel, D. L., Davis, K. K., & Jakicic, J. M. (2012). The comparison of a technology-based system and an in-person behavioral weight loss intervention. Obesity, 20(2), 356–363.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Prevention, C. f. D. C. a. (2004). The burden of chronic diseases and their risk factors: National and state perspectives.Google Scholar
  80. Prochaska, J. O. (2013). Transtheoretical model of behavior change. In Encyclopedia of behavioral medicine (pp. 1997–2000). Springer.Google Scholar
  81. Prochaska, J. O., & DiClemente, C. C. (1982). Transtheoretical therapy: Toward a more integrative model of change. Psychotherapy: Theory, research & practice, 19(3), 276–288.CrossRefGoogle Scholar
  82. Prochaska, J. O., & Norcross, J. C. (2010). Systems of psychotherapy: A transtheoretical analysis (Seventh Edition ed.): Brooks/Cole Cengage Learning.Google Scholar
  83. Prochaska, J. O., Redding, C. A., & Evers, K. E. (2008). The Transtheoretical model and stages of change in. In K. Glanz, B. K. Rimer, & K. Viswanath (Eds.), Health behavior and health education: Theory, research, practice (4th ed., pp. 97–122). San Fransisco: Wiley.Google Scholar
  84. Rabbi, M., Pfammatter, A., Zhang, M., Spring, B., & Choudhury, T. (2015). Automated personalized feedback for physical activity and dietary behavior change with mobile phones: A randomized controlled trial on adults. JMIR mHealth and uHealth, 3(2), e42.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Riley, W. T., Rivera, D. E., Atienza, A. A., Nilsen, W., Allison, S. M., & Mermelstein, R. (2011). Health behavior models in the age of mobile interventions: Are our theories up to the task? Translational Behavioral Medicine, 1(1), 53–71.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ritterband, L. M., Thorndike, F. P., Cox, D. J., Kovatchev, B. P., & Gonder-Frederick, L. A. (2009). A behavior change model for internet interventions. Annals of Behavioral Medicine, 38(1), 18–27.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Roth, W. R., Vilardaga, R., Wolfe, N., Bricker, J. B., & McDonell, M. G. (2014). Practical considerations in the design and development of smartphone apps for behavior change. Journal of Contextual Behavioral Science, 3(4), 269–272. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254717/.  https://doi.org/10.1016/j.jcbs.2014.08.006.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Rothman, A. J. (2000). Toward a theory-based analysis of behavioral maintenance. Health Psychology, 19, 64–69.PubMedCrossRefGoogle Scholar
  89. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78.PubMedCrossRefGoogle Scholar
  90. Sacks, F., Svetkey, L., Vollmer, W., Appel, L., Bray, G., Harsha, D., . . . Cutler, J. A. (2001). Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. The New England Journal of Medicine, 344(1), 3–10. doi: https://doi.org/10.1056/NEJM200101043440101.CrossRefPubMedGoogle Scholar
  91. Schifter, D. E., & Ajzen, I. (1985). Intention, perceived control, and weight loss: An application of the theory of planned behavior. Journal of Personality and Social Psychology, 49(3), 843–851.PubMedCrossRefGoogle Scholar
  92. Stacey, F. G., James, E. L., Chapman, K., Courneya, K. S., & Lubans, D. R. (2015). A systematic review and meta-analysis of social cognitive theory-based physical activity and/or nutrition behavior change interventions for cancer survivors. Journal of Cancer Survivorship, 9(2), 305–338.PubMedCrossRefGoogle Scholar
  93. Tai-Seale, T. (2003). Stage of change specific triggers and barriers to moderate physical activity. American Journal of Health Behavior, 27(3), 219–227.PubMedCrossRefGoogle Scholar
  94. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.CrossRefGoogle Scholar
  95. Vandelanotte, C., Muller, A. M., Short, C. E., Hingle, M., Nathan, N., Williams, S. L., & Maher, C. A. (2016). Past, present, and future of eHealth and mHealth research to improve physical activity and dietary behaviors. Journal of Nutrition Education and Behavior, 48(3), 219–228.  https://doi.org/10.1016/j.jneb.2015.12.006.CrossRefPubMedGoogle Scholar
  96. Wallace, L. S., Buckworth, J., Kirby, T. E., & Sherman, W. M. (2000). Characteristics of exercise behavior among college students: Application of social cognitive theory to predicting stage of change. Preventive Medicine, 31(5), 494–505.PubMedCrossRefGoogle Scholar
  97. Webb, T., & Sheeran, P. (2006). Does changing behavioral intentions engender behavior change? A meta-analysis of the experimental evidence. Psychological Bulletin, 132(2), 249–268.  https://doi.org/10.1037/0033-2909.132.2.249.CrossRefPubMedGoogle Scholar
  98. Webb, T., Joseph, J., Yardley, L., & Michie, S. (2010). Using the internet to promote health behavior change: A systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. Journal of Medical Internet Research, 12(1), e4.PubMedPubMedCentralCrossRefGoogle Scholar
  99. West, J. H., Hall, P., Arredondo, V., Berrett, B., Guerra, B., & Farrell, J. (2013). Health behavior theories in diet apps. Journal of consumer health on the internet, 17(1), 10–24.CrossRefGoogle Scholar
  100. White, A., Kavanagh, D., Stallman, H., Klein, B., Kay-Lambkin, F., Proudfoot, J., & Young, R. (2010). Online alcohol interventions: A systematic review. Journal of Medical Internet Research, 12(5).  https://doi.org/10.2196/jmir.1479.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Whittaker, R., McRobbie, H., Bullen, C., Rodgers, A., & Gu, Y. (2016). Mobile phone-Ba sed interve ntions for smoking cessation. The Cochrane Library, 4.  https://doi.org/10.1002/14651858.CD006611.pub4.
  102. Yang, C.-H., Maher, J. P., & Conroy, D. E. (2015). Implementation of behavior change techniques in Mobile applications for physical activity. American Journal of Preventive Medicine, 48(4), 452–455.  https://doi.org/10.1016/j.amepre.2014.10.010.CrossRefPubMedGoogle Scholar
  103. Young, M., Plotnikoff, R., Collins, C., Callister, R., & Morgan, P. (2014). Social cognitive theory and physical activity: A systematic review and meta-analysis. Obesity Reviews, 15(12), 983–995.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dartmouth-Hitchcock Medical CenterLebanonUSA
  2. 2.Milken Institute School of Public HealthGeorge Washington UniversityWashingtonUSA
  3. 3.Welch Center for Prevention, Epidemiology, and Clinical ResearchJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  4. 4.Johns Hopkins University School of MedicineBaltimoreUSA
  5. 5.University of MarylandBaltimoreUSA

Personalised recommendations