Advertisement

A geo-spatial inter-relationship with drainage morphometry, landscapes and NDVI in the context of climate change: a case study over the Varuna river basin (India)

  • Pawan Kumar Chaubey
  • Arnab Kundu
  • R. K. MallEmail author
Article
  • 25 Downloads

Abstract

Watershed development and management is essential for the present as well as future constancy of water resources in a river basin. Watershed prioritization, planning and development are depending on the morphometric analysis of a basin. The drainages of a basin are mainly influenced on geomorphic appearances which show a dynamic role for monitoring the basin’s hydrology as per topographical characteristics. In this paper, the morphometric study was characterized by set of parameters i.e. linear, aerial and relief aspects of Varuna river basin (India) with the integration of geo-spatial techniques. The mean annual rainfall, Normalized Difference Vegetation Index, Digital Elevation Model and Land Use/Land Cover (LULC) were taken into account for this study. The annual rainfall pattern and its percentage departure were shown by high frequencies of drought conditions while the seasonality index depicts that mostly rainfall occurred in less than 3 months. Moreover, indices such as Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index were used to conclude past extreme drought conditions (1996–2002, 2010–2017) over the basin. LULC changes were monitored over the south-east and north-west part of river basin during the period 1977 to 2013. The results revealed that an increasing trend of urbanization was monitored due to a decrease in agricultural land by 40.71% in the lower part of the basin. Moreover, the overall study can be helpful to assess the quantitative depiction of basin geometry as well as land use pattern for future development of agricultural growth.

Keywords

SPI Seasonality index SPEI Morphometric analysis NDVI Rainfall LULC 

Notes

Acknowledgements

The authors would like to thank the CGIR-CSI for providing the SRTM DEM, Earth Explorer (USGS) for Landsat satellite imagery used for successful analysis of the study. In addition, we are thankful to IMD, New Delhi and JAXA for providing for providing rainfall datasets used in this study. Authors are thankful to DST-MCECCR sponsored by Department of Science and Technology, Govt. of India, New Delhi for accomplishing the study.

References

  1. 1.
    Shukla, U. K., & Janardhana, R. N. (2008). Migration of the Ganga river and its implication on hydro-geological potential of Varanasi area, UP, India. Journal of Earth System Science, 117(4), 489–498.  https://doi.org/10.1007/s12040-008-0048-4.Google Scholar
  2. 2.
    Prakash, K., Singh, S., & Shukla, U. K. (2016). Morphometric changes of the Varuna River basin, Varanasi district, Uttar Pradesh. Journal of Geomatics, 10(1), 48–54.Google Scholar
  3. 3.
    Shukla, U. K. (2013). Varanasi and the Ganga river: A geological perspective. In V. Jayaswal (Ed.), Varanasi, Myths and scientific studies (pp. 100–113). New Delhi: Aryan Book International.Google Scholar
  4. 4.
    Khan, A. A., Nawani, P. C., & Srivastava, M. C. (1988). Geomorphological evolution of the area around Varanasi, UP with the aid of aerial photographs and LANDSAT imageries. Geological Survey of India, 113(8), 31–39.Google Scholar
  5. 5.
    Agarwal, C. S. (1998). Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. Journal of the Indian Society of Remote Sensing, 26(4), 169–175.  https://doi.org/10.1007/BF02990795.Google Scholar
  6. 6.
    Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater quality in the lower Varuna river basin, Varanasi district, Uttar Pradesh. Journal of the Geological Society of India, 73(2), 178–192.  https://doi.org/10.1007/s12594-009-0074-0.Google Scholar
  7. 7.
    Denizman, C. A. N. (2003). Morphometric and spatial distribution parameters of karstic depressions. Lower Suwannee River Basin, Florida. Journal of Cave and Karst Studies, 65(1), 29–35.Google Scholar
  8. 8.
    Mesa, L. M. (2006). Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology, 50(8), 1235–1242.  https://doi.org/10.1007/s00254-006-0297-y.Google Scholar
  9. 9.
    Mall, R. K., Attri, S. D., & Kumar, S. (2011). Extreme weather events and climate change policy in India. Journal of South Asia Disaster Studies, 4(2), 37–56.Google Scholar
  10. 10.
    Mall, R. K., Kumar, R., & Bhatla, R. (2011). Climate change and disasters in India. Journal of South Asia Disaster Studies, 4(1), 27–76.Google Scholar
  11. 11.
    Subedi, M. R., Xi, W., Edgar, C. B., Rideout-Hanzak, S., & Hedquist, B. C. (2019). Assessment of geostatistical methods for spatiotemporal analysis of drought patterns in East Texas, USA. Spatial Information Research, 27(1), 11–21.  https://doi.org/10.1007/s41324-018-0216-9.Google Scholar
  12. 12.
    Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58.  https://doi.org/10.1038/nclimate1633.Google Scholar
  13. 13.
    Dutta, D., Kundu, A., Patel, N. R., Saha, S. K., & Siddiqui, A. R. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived vegetation condition index (VCI) and standardized precipitation index (SPI). The Egyptian Journal of Remote Sensing and Space Science, 18(1), 53–63.  https://doi.org/10.1016/j.ejrs.2015.03.006.Google Scholar
  14. 14.
    Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritisation of subwatersheds based on morphometric analysis of drainage basin. A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27(3), 155–166.  https://doi.org/10.1007/s12524-009-0016-8.Google Scholar
  15. 15.
    Prakash, K., Singh, S., Mohanty, T., Chaubey, K., & Singh, C. K. (2017). Morphometric assessment of Gomati river basin, middle Ganga plain, Uttar Pradesh, North India. Spatial Information Research, 25(3), 449–458.  https://doi.org/10.1007/s41324-017-0110-x.Google Scholar
  16. 16.
    Dutta, D., Kundu, A., & Patel, N. R. (2013). Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto International, 28(3), 192–209.  https://doi.org/10.1080/10106049.2012.679975.Google Scholar
  17. 17.
    Kundu, A., Dwivedi, S., & Dutta, D. (2016). Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian Journal of Geosciences.  https://doi.org/10.1007/s12517-015-2185-9.Google Scholar
  18. 18.
    Kundu, A., Patel, N. R., Saha, S. K., & Dutta, D. (2017). Desertification in western Rajasthan (India): An assessment using remote sensing derived rain-use efficiency and residual trend methods. Natural Hazards, 86(1), 297–313.  https://doi.org/10.1007/s11069-016-2689-y.Google Scholar
  19. 19.
    Emiru, T., Naqvi, H. R., & Athick, M. A. (2018). Anthropogenic impact on land use land cover: Influence on weather and vegetation in Bambasi Wereda, Ethiopia. Spatial Information Research, 26(4), 427–436.  https://doi.org/10.1007/s41324-018-0186-y.Google Scholar
  20. 20.
    Griffith, J. A., Martinko, E. A., Whistler, J. L., & Price, K. P. (2002). Interrelationships among landscapes, NDVI, and stream water quality in the US Central Plains. Ecological Applications, 12(6), 1702–1718.Google Scholar
  21. 21.
    Kinthada, N. R., Gurram, M. K., Eadara, A., & Velagala, V. R. (2014). Land use/land cover and NDVI analysis for monitoring the health of micro-watersheds of Sarada River Basin, Visakhapatnam District, India. Journal of Geosciences, 3, 146.  https://doi.org/10.4172/2329-6755.1000146.Google Scholar
  22. 22.
    Sahoo, S., Dhar, A., Kayet, N., & Kar, A. (2017). Detecting water stress scenario by land use/land cover changes in an agricultural command area. Spatial Information Research, 25(1), 11–21.  https://doi.org/10.1007/s41324-016-0073-3.Google Scholar
  23. 23.
    Mall, R. K., Gupta, A., Singh, R., Singh, R. S., & Rathore, L. S. (2006). Water resources and climate change: An Indian perspective. Current Science, 90(12), 1610–1626.Google Scholar
  24. 24.
    Weil, Z., & Xinfeng, F. (2015). Analysis and evaluation of principal climatic factors of NDVI in the Yarlung Zangbo River Basin. Journal of Physics, 622(1), 1–8.  https://doi.org/10.1088/1742-6596/622/1/012048.Google Scholar
  25. 25.
    Bhatt, D., & Mall, R. K. (2015). Surface water resources, climate change and simulation modeling. Aquatic Procedia, 4, 730–738.  https://doi.org/10.1016/j.aqpro.2015.02.094.Google Scholar
  26. 26.
    Turner, M. G., Romme, W. H., Gardner, R. H., O’Neill, R. V., & Kratz, T. K. (1993). A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landscape Ecology, 8(3), 213–227.  https://doi.org/10.1007/BF00125352.Google Scholar
  27. 27.
    Forootan, E., Schumacher, M., Awange, J. L., & Schmied, H. M. (2016). Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges–Brahmaputra–Meghna River Basin. Water Resources Research, 52(3), 2240–2258.  https://doi.org/10.1002/2015WR018113.Google Scholar
  28. 28.
    Kundu, A., Denis, D. M., Patel, N. R., & Dutta, D. (2018). A geo-spatial study for analysing temporal responses of NDVI to rainfall. Singapore Journal of Tropical Geography, 39(1), 107–116.  https://doi.org/10.1111/sjtg.12217.Google Scholar
  29. 29.
    Pophare, A. M., & Balpande, U. S. (2014). Morphometric analysis of Suketi river basin, Himachal Himalaya. Journal of Earth System Science, 123(7), 1501–1515.  https://doi.org/10.1007/s12040-014-0487-z.Google Scholar
  30. 30.
    Rai, P. K., Chaubey, P. K., Mohan, K., & Singh, P. (2017). Geoinformatics for assessing the nferences of quantitative drainage morphometry of the Narmada Basin in India. Applied Geomatics, 9(3), 167–189.  https://doi.org/10.1007/s12518-017-0191-1.Google Scholar
  31. 31.
    Kothawale, D. R., Revadekar, J. V., & Kumar, K. R. (2010). Recent trends in pre-monsoon daily temperature extremes over India. Journal of Earth System Science, 119(1), 51–65.  https://doi.org/10.1007/s12040-010-0008-7.Google Scholar
  32. 32.
    Walsh, R. P. D., & Lawler, D. M. (1981). Rainfall seasonality: Description, spatial patterns and change through time. Weather, 36(7), 201–208.  https://doi.org/10.1002/j.1477-8696.1981.tb05400.x.Google Scholar
  33. 33.
    McKee, T. N., Doesken, J., & Kliest, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th conference on applied climatology (Vol. 17(22), pp. 179–183). Boston, MA: American Meteorological Society.Google Scholar
  34. 34.
    Strahler, A. N. (1964). Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of applied hydrology (pp. 4–39). New York: McGraw-Hill.Google Scholar
  35. 35.
    Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub basin using Remote Sensing and GIS techniques. International Journal of Geomatics and Geosciences, 2(1), 311–335.Google Scholar
  36. 36.
    Horton, R. E. (1945). Erosional development of streams and their drainage basins hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56(3), 275–370.  https://doi.org/10.1177/030913339501900406.Google Scholar
  37. 37.
    Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. EOS, Transactions American Geophysical Union, 38(6), 913–920.  https://doi.org/10.1029/TR038i006p00913.Google Scholar
  38. 38.
    Verstappen, H. T. (1983). Applied geomorphology: Geomorphological surveys for environmental development (p. 437). Amsterdam: Elsevier.Google Scholar
  39. 39.
    Singh, P., Thakur, J. K., & Singh, U. C. (2013). Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environmental Earth Sciences, 68(7), 1967–1977.  https://doi.org/10.1007/s12665-012-1884-8.Google Scholar
  40. 40.
    Guarnieri, P., & Pirrotta, C. (2008). The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily). Geomorphology, 95(3–4), 260–273.  https://doi.org/10.1016/j.geomorph.2007.06.013.Google Scholar
  41. 41.
    Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646.  https://doi.org/10.1130/0016-7606.Google Scholar
  42. 42.
    Pareta, K., & Pareta, U. (2011). Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. International Journal of Geomatics and Geosciences, 2(1), 248–269.Google Scholar
  43. 43.
    Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361.  https://doi.org/10.1029/TR013i001p00350.Google Scholar
  44. 44.
    Singh, V. P., Yadav, S., & Yadava, R. N. (2018). Hydrologic modeling, earth and environmental science, water science and technology library book series (Vol. 81). Aurora: WSTL.  https://doi.org/10.1007/978-981-10-5801-1.Google Scholar
  45. 45.
    Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties, and geomorphology (No. CU-TR-11). New York: Columbia University.Google Scholar
  46. 46.
    Sreedevi, P., Srinivasulun, S., & Kesava, R. K. (2001). Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data. Environmental Geology, 40(9), 1088–1094.  https://doi.org/10.1007/s002540100295.Google Scholar
  47. 47.
    Mueller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371–385.Google Scholar
  48. 48.
    Howard, A. D. (1967). Drainage analysis in geologic interpretation: A summation. AAPG Bulletin, 51(11), 2246–2259.Google Scholar
  49. 49.
    Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 294–B.  https://doi.org/10.3133/pp294B.
  50. 50.
    Chorley, R. J., Donald, Malm, E. G., & Pogorzelski, H. A. (1957). A new standard for estimating drainage basin shape. American Journal of Science, 255, 138–141.  https://doi.org/10.2475/ajs.255.2.138.Google Scholar
  51. 51.
    Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the clinch mountain area. Virginia and Tennessee. In: Technical Report. 3. Office of Naval Research. Department of Geology. Columbia University, Geography Branch, New York 1960.Google Scholar
  52. 52.
    Gravelius, H. (1914). Flusskunde. Goschen Verlagshan dlung berlin. In Zavoianu I (Ed.), 1985. Morphometry of drainage basins. Amsterdam: Elsevier.Google Scholar
  53. 53.
    Smart, S., & Surkan, A. J. (1967). The relation between main stream length and area in drainage basins. Water Resources Research, 3(4), 963–973.  https://doi.org/10.1029/WR003i004p00963.Google Scholar
  54. 54.
    Black, P. E. (1972). Hydrograph responses to geomorphic model watershed characteristics and precipitation variables. Journal of Hydrology, 17(4), 309–329.  https://doi.org/10.1016/0022-1694(72)90090-X.Google Scholar
  55. 55.
    Faniran, A. (1968). The index of drainage intensity- a provisional new drainage factor. Australian Journal of Science, 31, 328–330.Google Scholar
  56. 56.
    Strahler, A. N. (1968). Quantitative geomorphology, Geomorphology. In R. W. Fair-Bridge (Ed.), The encyclopidia of geomorphology (pp. 898–912). Strousburg: Dowden, Hutchinson and Ross.Google Scholar
  57. 57.
    Melton, M. A. (1965). The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. The Journal of Geology, 73(1), 1–38.Google Scholar
  58. 58.
    Sreedevi, P. D., Sreekanth, P. D., Khan, H. H., & Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in an semi-arid region: Using SRTM data and GIS. Environmental Earth Sciences, 70(2), 839–848.  https://doi.org/10.1007/s12665-012-2172-3.Google Scholar
  59. 59.
    Singh, S., & Dubey, A. (1994). Geoenvironmental planning of watershed in India (pp. 28–69). Allahabad: Chugh Publications.Google Scholar
  60. 60.
    Sreedevi, P. D., Subrahmanyam, K. & Ahmed, S. (2005). Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India. Hydrogeology Journal, 13(3), 534–543.  https://doi.org/10.1007/s10040-004-0375-8.Google Scholar
  61. 61.
    Paton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse Hydrogeomorphic controls. Water Resources Research, 12(5), 941–952.  https://doi.org/10.1029/WR012i005p00941.Google Scholar
  62. 62.
    Broscoe, A. J. (1959). Quantitative analysis of longitudinal stream profiles of small watersheds, project NR 389–042, technical report No. 18. Department of Geology, Columbian University, ONR, Geography Branch, New York 27, N.Y.Google Scholar
  63. 63.
    Gajbhiye, S., Mishra, S. K., & Pandey, A. (2014). Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Applied Water Science, 4(1), 51–61.  https://doi.org/10.1007/s13201-013-0129-7.Google Scholar
  64. 64.
    Sharma, V. V. L. N., Krishna, G. M., Malini, B. H., & Rao, K. N. (2001). Landuse/Landcover change detection through remote sensing and its climatic implications in the Godavari delta region. Journal of the Indian Society of Remote Sensing., 29(1–2), 85–91.  https://doi.org/10.1007/BF02989918.Google Scholar

Copyright information

© Korean Spatial Information Society 2019

Authors and Affiliations

  1. 1.DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia

Personalised recommendations