Integrating and geolocating post earthquake building damage surveys: The 7.8 Mw Jama-Pedernales earthquake, Ecuador

  • Jose M. MarreroEmail author
  • Hugo Yepes
  • Jacob Pastor
  • Pablo B. Palacios
  • Catalina Erazo
  • Patricio Ramón
  • Carlos Estrella


Currently, it is fairly widespread to use smartphones or tablets on field surveys to collect and geolocate damage data. However, geolocation is not a straight forward process and may give inaccurate results such as, for example when the size of the object to be surveyed is relatively small or the coverage of the satellite constellation (e.g. GPS) is inadequate due to obstacles and shadows present in urban areas. Moreover, the pressure that surveyors and technicians suffer during and after the impact of a natural hazard may make the whole geolocation process even more difficult. In this paper, we describe a methodology to overcome the issues of inaccurate records in five damage data surveys collected after the 7.8 magnitude earthquake that struck the coast of Ecuador in April 2016, together with the three administrative sources used to interpret the damage. We started off by homogenizing the various states of damage as charted in field and aerial surveys, including satellite imagery. We then resolved geolocation inaccuracies by using a set of algorithms that take into account the spatial context and the size of the building. These algorithms also flag the quality of the sources to ultimately compute a figure of the spatial distribution of the damage suffered by residential buildings, together with harm done to productive and social infrastructure. Without these preliminary proceedings, the geolocation inaccuracies of the damage data surveys would not have allowed for adequate and detailed risk assessment.


Geolocation Seismic risk analysis Jama-Pedernales earthquake Portoviejo Ecuador 



This work has been significantly supported by the Secretaría de Educación Superior de Ciencia, Tecnología e Innovación (SENESCYT) of the Government of Ecuador under the PROMETEO Programme (PROMETEOCEB- 004-2015 and PROMETEO-CEB-009-2016). Special thanks are extended to the members of the “Unidad Técnica de Riesgos” of the Municipality of Portoviejo, MSc. Jhonny García, Ing. Manuel Vera, MSc. Julio Celorio, and Ing. Gastón Loor, for their help and collaboration during the field work and data acquisition.

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Supplementary material

41324_2018_230_MOESM1_ESM.pdf (14.5 mb)
Supplementary material 1 (pdf 14863 KB)


  1. 1.
    Konečný, M., & Bandrova, T. (2006). Proposal for a standard in cartographic visualization of natural risks and disasters. International Journal of Urban Sciences, 10(2), 130–139. Scholar
  2. 2.
    Dominey-Howes, D., & Papathoma, M. (2007). Validating a tsunami vulnerability assessment model (the ptva model) using field data from the 2004 indian ocean tsunami. Natural Hazards, 40(1), 113–136. Scholar
  3. 3.
    Porter, K., Farokhnia, K., Cho, I., Grant, D., Jaiswal, K., Wald, D., & Noh, H. (2012). Global vulnerability estimation methods for the global earthquake model. In 15th world conference on earthquake engineering (pp. 24–28). Lisbon, Portugal. Accessed 4 Feb 2017.
  4. 4.
    Modsching, M., Kramer, R., & ten Hagen, K. (2006). Field trial on gps accuracy in a medium size city: The influence of built-up. In 3rd workshop on positioning, navigation and communication (pp. 209–218). Hannover.Google Scholar
  5. 5.
    Porter, K. (2010). Rapid observation of vulnerability and estimation of risk (rover) End-to-end seismic risk management software. In 9th US national and 10th Canadian conference on earthquake engineering (pp. 3078–3087). Accessed 18 Jan 2017.
  6. 6.
    Caldeira, T. P. (2017). Peripheral urbanization: Autoconstruction, transversal logics, and politics in cities of the global south. Environment and Planning D: Society and Space, 35(1), 3–20. Scholar
  7. 7.
    Bhanumurthy, V., Rao, K. R. M., Sankar, G. J., & Nagamani, P. (2017). Spatial data integration for disaster/emergency management: An indian experience. Spatial Information Research, 25(2), 303–314. Scholar
  8. 8.
    Ye, L., Kanamori, H., Avouac, J.-P., Li, L., Cheung, K. F., & Lay, T. (2016). The 16 April 2016, Mw 7.8 (Ms 7.5) Ecuador earthquake: A quasi-repeat of the 1942 Ms 7.5 earthquake and partial re-rupture of the 1906 Ms 8.6 Colombia—Ecuador earthquake. Earth and Planetary Science Letters, 454, 248–258. Scholar
  9. 9.
    SEMPLADES. (2016). Evaluación de los costos de reconstrución. Sismo en ecuador. Abril 2016. Reporte técnico, Secretaría Nacional de Planificación y Desarrollo, Quito, Ecuador. Accessed 13 Nov 2016.
  10. 10.
    IG-EPN, I. (2016). Evaluación de intensidades sismo en pedernales. Informe Sísmico Especial 12, Instituto Geofísico de la Escuela Politécnica Nacional. Accessed 25 Apr 2016.
  11. 11.
    IG-EPN. (2016). Observaciones del sismo del 16 de abril de 2016 de magnitud mw 7.8. intensidades y aceleraciones. Informe Sísmico Especial 18, Instituto Geofísico de la Escuela Politécnica Nacional. Accessed 23 June 2016.
  12. 12.
    Dilo, A., & Zlatanova, S. (2011). A data model for operational and situational information in emergency response. Applied Geomatics, 3(4), 207–218. Scholar
  13. 13.
    Instituto Geográfico Militar. (2016). Cartografía del terremoto del 16 de abril de 2016. Accessed 16 July 2016.
  14. 14.
    Humanitarian Open Street Map. (2016). Ecuador earthquake. Accessed 2 Sept 2016.
  15. 15.
    Noardo, F., Lingua, A., Aicardi, I., & Vigna, B. (2016). Cartographic data harmonisation for a cross-border project development. Applied Geomatics, 8(3–4), 133–150. Scholar
  16. 16.
    Applied Technology Council. (1985). ATC-13. Earthquake Damage Evaluation Data for California. Redwood City. Accessed 4 Dec 2017.

Copyright information

© Korean Spatial Information Society 2019

Authors and Affiliations

  1. 1.Escuela Politécnica Nacional, Instituto GeofísicoQuitoEcuador
  2. 2.Instituto Geográfico MilitarQuitoEcuador
  3. 3.Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations