Advertisement

Spatial Information Research

, Volume 27, Issue 2, pp 205–216 | Cite as

Smoke detections and visibility estimation using Himawari_8 satellite data over Sumatera and Borneo Island Indonesia

  • Heri Ismanto
  • Hartono Hartono
  • Muh Aris MarfaiEmail author
Article
  • 54 Downloads

Abstract

Smoke as the one of weather hazard that contains large pollutant and affect the major live aspects: health, tourism, transportation and climate. Due to its regular appearance in Maritime Continent Indonesian area South East Asia, it is important to assess the satellite remote sensing Himawari_8 data to detect smoke and model the horizontal visibility as the smoke proxy. Using RGB (red, green, blue) combination, maximum likelihood and backward selection of multiple regression were used to detect and to develop the horizontal visibility model. RGB aerosol and RGB day natural color visually sees only the thick smoke with horizontal visibility observe below 1600 m. The best horizontal visibility model [with significant level 95% (probability < 0.05)] was develop from combination of band 3 (0.64 µm); band 7 (3.9 µm); and band 14 (11.2 µm) with root means square error value is about 404 m and correlation value is about 0.69.

Keywords

Smoke detection Visibility model Himawari_8 RGB aerosol Sumatera Borneo 

Notes

Acknowledgements

This work as a part of Ph.D. research that was supported by Education and Training Center of Indonesian Meteorological Climatological and Geophysical Agency. We thank to Mr. Andersen Panjaitan as the Chief of Satellite SubDivision of BMKG for providing Himawari_8 satellite data and Mr. Retnadi Heru Jatmiko (UGM) and Mr Alpon Sepriando (BMKG) for valuable discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., & Logan, J. A. (2003). Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. Journal of Geophysical Research, 108, ACH-1.  https://doi.org/10.1029/2002JD002378.Google Scholar
  2. 2.
    Gaveau, D. L., Salim, M., Hergoualc’h, K., Locatelli, B., Sloan, S., Wooster, M., et al. (2014). Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Scientific Reports, 4, 6112.  https://doi.org/10.1038/srep06112.CrossRefGoogle Scholar
  3. 3.
    Betha, R., Behera, S. N., & Balasubramanian, R. (2014). 2013 Southeast Asian Smoke Haze: Fractionation. Environmental Science and Technology, 48, 4327–4335.  https://doi.org/10.1021/es405533d.CrossRefGoogle Scholar
  4. 4.
    Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., et al. (2015). Fine particulate matter associated with monsoonal effect and the responses of biomass fire hotspots in the tropical environment. Atmospheric Chemistry and Physics Discussions, 15, 22215–22261.  https://doi.org/10.5194/acpd-15-22215-2015.CrossRefGoogle Scholar
  5. 5.
    Heil, A., Langmann, B., & Aldrian, E. (2007). Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitigation and Adaptation Strategies for Global Change, 12, 113–133.  https://doi.org/10.1007/s11027-006-9045-6.CrossRefGoogle Scholar
  6. 6.
    Li, Z., Li, J., Menzel, W. P., Schmit, T. J., & Ackerman, S. A. (2007). Comparison between current and future environmental satellite imagers on cloud classification using MODIS. Remote Sensing of Environment, 108, 311–326.  https://doi.org/10.1016/j.rse.2006.11.023.CrossRefGoogle Scholar
  7. 7.
    Hillger, D., Kopp, T., Seaman, C., Miller, S., Lindsey, D., et al. (2015). User validation of VIIRS satellite imagery. Remote Sensing, 8(1), 11.  https://doi.org/10.3390/rs8010011.CrossRefGoogle Scholar
  8. 8.
    Lensky, I. M., & Rosenfeld, D. (2008). Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmospheric Chemistry and Physics, 8, 6739–6753.CrossRefGoogle Scholar
  9. 9.
    Kokhanovsky, A., & Leeuw, G. (2009). Satellite aerosol remote sensing over land (pp. 2–4). Chichester: Springer/Praxis Publishing.  https://doi.org/10.1007/978-3-540-69397-0.CrossRefGoogle Scholar
  10. 10.
    Shin, D. H., Lee, H., Jung, J. S., Lee, K. H., Noh, Y. M., Mu, D., et al. (2009). Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea. Atmospheric Environment, 43, 879–888.  https://doi.org/10.1016/j.atmosenv.2008.10.058.CrossRefGoogle Scholar
  11. 11.
    Bessho, K., Date, K., & Hayashi, M. (2016). An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 2, 151–183.  https://doi.org/10.2151/jmsj.2016-009.CrossRefGoogle Scholar
  12. 12.
    Wang, J., Song, W., Wang, W., Zhang, Y., & Liu, S. (2011). A new algorithm for forest fire smoke detection based on MODIS data in Heilongjiang province. In 2011 international conference on remote sensing, environment and transportation engineering (pp. 5–8).  https://doi.org/10.1109/RSETE.2011.5964042.
  13. 13.
    Rosenfeld, D., & Lens, (1998). Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bulletin of the American Meteorological Society, 79, 2457–2476.CrossRefGoogle Scholar
  14. 14.
    Kaufman, Y. J., & Tanré, D. (2003). Aerosol Measurements. In J. R. Holton, J. A. Curry, & J. A. Pyle (Eds.), Encyclopedia of atmospheric science (pp. 1939–1956). Amsterdam: Elsevier Science Ltd.Google Scholar
  15. 15.
    Li, Z. Q., Khananian, A., Fraser, R. H., & Cihlar, J. (2001). Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(9), 1859–1870.  https://doi.org/10.1109/36.951076.CrossRefGoogle Scholar
  16. 16.
    Giacco, F., Thiel, C., Pugliese, L., Scarpetta, S., & Marinaro, M. (2010). Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs. IEEE Transactions on Geoscience and Remote Sensing, 48(10), 3769–3779.  https://doi.org/10.1109/TGRS.2010.2047863.CrossRefGoogle Scholar
  17. 17.
    Cetin, M., Kavzoglu, T., & Musaoglu, N. (2004). Classification of multi-spectral, multi-temporal and multi-sensor images using principal componenet analysis and artificial neural network: Beykoz case (pp. 0–5). Estambul: Cartesio.org. Retrieved from http://cartesia.org/geodoc/isprs2004/comm4/papers/480.pdf.
  18. 18.
    Li, X., Song, W., Lian, L., & Wei, X. (2015). Forest fire smoke detection using back-propagation neural network based on modis data. Remote Sensing, 7(100501), 4473–4498.  https://doi.org/10.3390/rs70404473.CrossRefGoogle Scholar
  19. 19.
    Duda, T., & Canty, M. (2002). Unsupervised classification of satellite imagery: Choosing a good algorithm. International Journal of Remote Sensing, 23(11), 2193–2212.  https://doi.org/10.1080/01431160110078467.CrossRefGoogle Scholar
  20. 20.
    Peterson, D., Hyer, E., & Wang, J. (2013). A short-term predictor of satellite-observed fire activity in the North American boreal forest: Toward improving the prediction of smoke emissions. Atmospheric Environment, 71, 304–310.  https://doi.org/10.1016/j.atmosenv.2013.01.052.CrossRefGoogle Scholar
  21. 21.
    Ristiyono, L., Danoedoro, P., & Marfai, M. A. (2016). Kajian Klasifikasi Berbasis Obyek Untuk Pemetaan Bangunan Yang Berisiko Gempabumi Di Bantul, Daerah Istimewah Yogyakarta. Majalah Geografi Indonesia, 30(1), 68–75.CrossRefGoogle Scholar
  22. 22.
    Indrawati, L., Hartono, H., & Sunarto, S. (2009). Klasifikasi Pohon Keputusan Untuk Kajian Perubahan Penggunaan Lahan Kota Semarang Menggunakan Citra Landsat TM/ETM+. Majalah Geografi Indonesia, 23(2), 109–123. https://www.ingentaconnect.com/content/doaj/02151790/2016/00000023/00000002/art00002.
  23. 23.
    Mecikalski, J. R., Berendes, T. A., Feltz, W. F., Bedka, K. M., Bedka, S. T., Murray, J. J., et al. (2007). Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash. Bulletin of the American Meteorological Society, 88(10), 1589–1607.  https://doi.org/10.1175/bams-88-10-1589.CrossRefGoogle Scholar
  24. 24.
    Smith, A. M. S., & Wooster, M. J. (2005). Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations. International Journal of Wildland Fire, 14(3), 249–254.  https://doi.org/10.1071/WF05012.CrossRefGoogle Scholar
  25. 25.
    Heil, A., & Goldammer, G. (2001). Smoke-haze pollution: A review of the 1997 episode in Southeast Asia. Regional Environmental Change, 2, 24–37.  https://doi.org/10.1007/s101130100021.CrossRefGoogle Scholar
  26. 26.
    ICAO. (2011). Doc. 8896 Manual of Aeronautical Meteorological Practice (Ninth Edit). Montreal, Quebec, CanadaGoogle Scholar
  27. 27.
    ICAO. Meteorological Service for International Air Navigation (2013).Google Scholar
  28. 28.
    Wang, Y., & Field, R. D. (2004). Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Nino phenomenon from 1973 to 2003. Geophysical Research Letters, 31, 1–4.  https://doi.org/10.1029/2003GL018853.CrossRefGoogle Scholar
  29. 29.
    Ismanto, H., Hartono, H., & Marfai, M. A. (n.d.). Spatiotemporal visibility characteristics impacted by forest and land fire over airports in Sumatera and Borneo Island Indonesia. Queastiones Geographicae Journal (Submitted), 1–14 (In Press).Google Scholar
  30. 30.
    Tosca, M. G., Randerson, J. T., Zender, C. S., Nelson, D. L., Diner, D. J., & Logan, J. A. (2011). Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. Journal of Geophysical Research, 116, 1–14.  https://doi.org/10.1029/2010JD015148.Google Scholar
  31. 31.
    Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modelling field project. Bulletin of the American Meteorological Society, 90(Mar), 341–359.  https://doi.org/10.1175/2008bams2354.1.CrossRefGoogle Scholar
  32. 32.
    Ferguson, S. A., Collins, R. L., Ruthford, J., & Fukuda, M. (2003). Vertical distribution of nighttime smoke following a wildland biomass fire in boreal Alaska. Journal of Geophysical Research, 108(D23), 4743.  https://doi.org/10.1029/2002JD003324.CrossRefGoogle Scholar
  33. 33.
    Heintzenberg, J. (2003). Physics and chemistry of aerosols. In J. R. Holton, J. A. Curry, & J. A. Pyle (Eds.), Encyclopedia of atmospheric science (pp. 34–40). Amsterdam: Elsevier Science Ltd.CrossRefGoogle Scholar
  34. 34.
    Shukla, B. P., & Pal, P. K. (2009). Automatic smoke detection using satellite imagery: Preparatory to smoke detection from Insat-3D. International Journal of Remote Sensing, 30(1), 9–22.  https://doi.org/10.1080/01431160802226059.CrossRefGoogle Scholar
  35. 35.
    Wang, J., Ge, C., Yang, Z., Hyer, E. J., Reid, J. S., Chew, B. N., et al. (2013). Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography. Atmospheric Research, 122, 486–503.  https://doi.org/10.1016/j.atmosres.2012.05.009.CrossRefGoogle Scholar
  36. 36.
    McCue, M. H. (2007). Validation and development of existing and new RAOB-based warm-season convective wind forecasting tools for CAPE CANAVERAL Air Force and Kennedy Space Center. Plymouth: Plymouth State University.Google Scholar
  37. 37.
    Li, B., & Hou, L. (2015). Discuss on satellite-based particulate matter monitoring technique. In ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XL-7/W3, pp. 219–223).  https://doi.org/10.5194/isprsarchives-xl-7-w3-219-2015.
  38. 38.
    Kessner, A. L., Wang, J., Levy, R. C., & Colarco, P. R. (2013). Remote sensing of surface visibility from space : A look at the United States East Coast. Atmospheric Environment, 81, 136–147.  https://doi.org/10.1016/j.atmosenv.2013.08.050.CrossRefGoogle Scholar
  39. 39.
    Hyslop, N. P. (2009). Impaired visibility: The air pollution people see. Atmospheric Environment, 43(1), 182–195.  https://doi.org/10.1016/j.atmosenv.2008.09.067.CrossRefGoogle Scholar

Copyright information

© Korean Spatial Information Society 2018

Authors and Affiliations

  • Heri Ismanto
    • 1
    • 2
  • Hartono Hartono
    • 2
  • Muh Aris Marfai
    • 2
    Email author
  1. 1.Center for Aeronautical MeteorologyAgency of Meteorological, Climatological and Geophysical (BMKG)JakartaIndonesia
  2. 2.Faculty of GeographyUniversitas Gadjah MadaYogyakartaIndonesia

Personalised recommendations