Advertisement

Spatial Information Research

, Volume 27, Issue 2, pp 187–204 | Cite as

The spatial clustering of dengue disease and risk susceptibility mapping: an approach towards sustainable health management in Kharagpur city, India

  • Subrata GhoshEmail author
  • Santanu Dinda
  • Nilanjana Das Chatterjee
  • Kousik Das
  • Riya Mahata
Article
  • 29 Downloads

Abstract

Dengue fever becomes one of the serious vector-borne diseases in the world, particularly in tropical countries. Mosquitoes borne disease transmission are mainly transpired by physical, environmental and socio-economic variables. Therefore, disease mapping is essential for monitoring, prediction, and prevention of dengue. Accordingly, the aims of this research are to find out the dengue outbreak, spatial pattern, understand the factors and construct a risk map to accurately predict and control of dengue. For this purpose, the Kharagpur city of West Bengal has been selected which is frequently encountered with the dengue outbreak. Epidemiological data were collected from the district health department. The spatial scan statistics of the Poisson model and Local Moran’s I is used for the mapping of spatial patterns and concentration of dengue and Monte Carlo hypothesis testing was applied to test the significance of the result. Therefore, multiple logistic regression analysis has been applied with selected parameters to produce a risk map for the entire study area. Finally, this study has proposed suitable site-specific management strategies. However, this study provides an example of disease risk estimation which will be remarkable for spatial analysis of epidemiological research as well as health planning and disease surveillance.

Keywords

Dengue disease Poisson model SaTScan™ Spatial clustering Dengue risk mapping Kharagpur city 

Notes

Acknowledgements

The authors are thankful to the students of post-graduate research groups of the year 2017 for cooperating field survey and especially thanks to the Chairman of Kharagpur Municipality for providing the epidemiological data. The authors also thanks to Sanchita Barman, Ravi Kumar Shaw, Sathi Yasmin and Apurba Dinda for their contribution in every aspect. The authors also thanks to UGC (New Delhi, India) for providing research fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

41324_2018_224_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. 1.
    Atique, S., Abdul, S. S., Hsu, C., & Chuang, T. (2016). Asian Pacific Journal of Tropical Medicine Meteorological influences on dengue transmission in Pakistan. Asian Pacific Journal of Tropical Medicine, 9(10), 954–961.  https://doi.org/10.1016/j.apjtm.2016.07.033.CrossRefGoogle Scholar
  2. 2.
    Dhiman, S., Rabha, B., Yadav, K., Baruah, I., & Veer, V. (2014). Insecticide susceptibility and dengue vector status of wild Stegomyia albopicta in a strategically important area of Assam, India. Parasites and Vectors, 7(1), 295.  https://doi.org/10.1186/1756-3305-7-295.CrossRefGoogle Scholar
  3. 3.
    Rogers, D. J., Wilson, A. J., Hay, S. I., & Graham, A. J. (2006). The global distribution of yellow fever and dengue. Advances in Parasitology, 62, 181–220.  https://doi.org/10.1016/S0065-308X(05)62006-4.CrossRefGoogle Scholar
  4. 4.
    World Health Organization. (2009). Dengue guidelines for diagnosis, treatment, prevention, and control (pp. 1–160). World Health Organization, Geneva, Switzerland.Google Scholar
  5. 5.
    Lambrechts, L., Scott, T. W., & Gubler, D. J. (2010). Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Neglected Tropical Diseases, 4(5), e646.  https://doi.org/10.1371/journal.pntd.0000646.CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Roche, R., & Gould, E. A. (2013). Understanding the dengue viruses and progress towards their control. BioMed Research International.  https://doi.org/10.1155/2013/690835.
  7. 7.
    Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507.  https://doi.org/10.1038/nature12060.CrossRefGoogle Scholar
  8. 8.
    Stanaway, J. D., Shepard, D. S., Undurraga, E. A., Halasa, Y. A., Coffeng, L. E., Brady, O. J., et al. (2016). The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. The Lancet Infectious Diseases, 16(6), 712–723.  https://doi.org/10.1016/S1473-3099(16)00026-8.CrossRefGoogle Scholar
  9. 9.
    Louis, V. R., Phalkey, R., Horstick, O., Ratanawong, P., Wilder-Smith, A., Tozan, Y., et al. (2014). Modeling tools for dengue risk mapping—A systematic review. International Journal of Health Geographics, 13(50), 1–15.  https://doi.org/10.1186/1476-072X-13-50.Google Scholar
  10. 10.
    Rogers, D. J., Suk, J. E., & Semenza, J. C. (2014). Using global maps to predict the risk of dengue in Europe. Acta Tropica, 129(1), 1–14.  https://doi.org/10.1016/j.actatropica.2013.08.008.CrossRefGoogle Scholar
  11. 11.
    Palaniyandi, M. (2013). GIS for mapping updates of spatial spread and the ecological reasoning of JE transmission in India (1956–2012). Journal of Geomatices, 7(2), 126–133.Google Scholar
  12. 12.
    Bhoomiboonchoo, P., Gibbons, R. V., Huang, A., Yoon, I. K., Buddhari, D., Nisalak, A., et al. (2014). The spatial dynamics of dengue virus in Kamphaeng Phet, Thailand. PLoS Neglected Tropical Diseases, 8(9), e3138.  https://doi.org/10.1371/journal.pntd.0003138.CrossRefGoogle Scholar
  13. 13.
    Campbell, K. M., Lin, C. D., Iamsirithaworn, S., & Scott, T. W. (2013). The complex relationship between weather and dengue virus transmission in Thailand. American Journal of Tropical Medicine and Hygiene, 89(6), 1066–1080.  https://doi.org/10.4269/ajtmh.13-0321.CrossRefGoogle Scholar
  14. 14.
    Campbell, L. P., Luther, C., Moo-Llanes, D., Ramsey, J. M., Danis-Lozano, R., & Peterson, A. T. (2015). Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 20140135.  https://doi.org/10.1098/rstb.2014.0135.CrossRefGoogle Scholar
  15. 15.
    Fischer, D., Thomas, S. M., Neteler, M., Tjaden, N. B., & Beierkuhnlein, C. (2014). Climatic suitability of Aedes albopictus in Europe referring to climate change projections: Comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance, 19(6), 20696.  https://doi.org/10.2807/1560-7917.ES2014.19.6.20696.CrossRefGoogle Scholar
  16. 16.
    Kolivras, K. N. (2010). Changes in dengue risk potential in Hawaii, USA, due to climate variability and change. Climate Research, 42(1), 1–11.  https://doi.org/10.3354/cr00861.CrossRefGoogle Scholar
  17. 17.
    Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., et al. (2014). Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Neglected Tropical Diseases, 8(11), e3301.  https://doi.org/10.1371/journal.pntd.0003301.CrossRefGoogle Scholar
  18. 18.
    Khormi, H. M., Kumar, L., & Elzahrany, R. A. (2011). Modeling spatio-temporal risk changes in the incidence of dengue fever in Saudi Arabia: A geographical information system case study. Geospatial Health, 6(1), 77–84.  https://doi.org/10.4081/gh.2011.159.CrossRefGoogle Scholar
  19. 19.
    Jeefoo, P., Tripathi, N. K., & Souris, M. (2011). Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. International Journal of Environmental Research and Public Health, 8(1), 51–74.  https://doi.org/10.3390/ijerph8010051.CrossRefGoogle Scholar
  20. 20.
    Harrington, L. C., Scott, T. W., Lerdthusnee, K., Coleman, R. C., Costero, A., Clark, G. G., et al. (2005). Dispersal of the dengue vector Aedes aegypti within and between rural communities. The American Journal of Tropical Medicine and Hygiene, 72(2), 209–220. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.506.9955&rep=rep1&type=pdf.CrossRefGoogle Scholar
  21. 21.
    Samuel, P. P., Thenmozhi, V., Nagaraj, J., Kumar, T. D., & Tyagi, B. K. (2014). Dengue vectors prevalence and the related risk factors involved in the transmission of dengue in Thiruvananthapuram district, Kerala, South India. Journal of Vector Borne Diseases, 51(4), 313–319.Google Scholar
  22. 22.
    National Vector Borne Disease Control Programme, Ministry of Health and Family Welfare Government of India. http://nvbdcp.gov.in. Accessed on December 26th, 2017.
  23. 23.
    Hanafi-Bojd, A. A., Vatandoost, H., Oshaghi, M. A., Haghdoost, A. A., Shahi, M., Sedaghat, M. M., et al. (2012). Entomological and epidemiological attributes for malaria transmission and implementation of vector control in southern Iran. Acta Tropica, 121(2), 85–92.  https://doi.org/10.1016/j.actatropica.2011.04.017.CrossRefGoogle Scholar
  24. 24.
    Adde, A., Roucou, P., Mangeas, M., Ardillon, V., Desenclos, C., Rousset, D., et al. (2016). Predicting dengue fever outbreaks in French Guiana using climate indicators. PLOS Neglected Tropical Diseases, 10(4), 1–16.  https://doi.org/10.1371/journal.pntd.0004681.CrossRefGoogle Scholar
  25. 25.
    Patz, J. A., Martens, P., Focks, D. A., & Jetten, T. H. (1998). Dengue fever epidemic potential as projected by general circulation models of global climate change. Environmental Health Perspectives, 106(3), 147–153.  https://doi.org/10.1289/ehp.98106147.CrossRefGoogle Scholar
  26. 26.
    Manica, M., Filipponi, F., D’Alessandro, A., Screti, A., Neteler, M., Rosà, R., et al. (2016). Spatial and temporal hot spots of Aedes albopictus abundance inside and outside a South European metropolitan area. PLoS Neglected Tropical Diseases, 10(6), e0004758.  https://doi.org/10.1371/journal.pntd.0004758.CrossRefGoogle Scholar
  27. 27.
    Hagenlocher, M., Delmelle, E., Casas, I., & Kienberger, S. (2013). Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: Statistical vs expert-based modeling. International Journal of Health Geographics, 12, 12-36.  https://doi.org/10.1186/1476-072X-.CrossRefGoogle Scholar
  28. 28.
    Vincenti-Gonzalez, M. F., Velasco-salas, Z. I., Lizarazo, F., Amarista, M. A., Sierra, G. M., Comach, G., et al. (2017). Spatial analysis of dengue seroprevalence and modeling of transmission risk factors in a dengue hyperendemic city of Venezuela. PLoS Neglected Tropical Diseases, 11, 1–21.  https://doi.org/10.1371/journal.pntd.0005317.CrossRefGoogle Scholar
  29. 29.
    Stevens, K. B., & Pfeiffer, D. U. (2011). Spatial modelling of disease using data- and knowledge-driven approaches. Spatial and Spatio-Temporal Epidemiology, 2(3), 125–133.  https://doi.org/10.1016/j.sste.2011.07.007.CrossRefGoogle Scholar
  30. 30.
    Srivastava, A., Nagpal, B. N., Joshi, P. L., Paliwal, J. C., & Dash, A. P. (2009). Identification of malaria hot spots for focused intervention in tribal state of India: A GIS based approach. International Journal of Health Geographics, 8(1), 30.  https://doi.org/10.1186/1476-072X-8-30.CrossRefGoogle Scholar
  31. 31.
    Gilruth, P., Kalluri, S., Rogers, D., & Szczur, M. (2007). Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: A review. PLoS Pathogens, 3(10), 1361–1371.  https://doi.org/10.1371/journal.ppat.0030116.Google Scholar
  32. 32.
    Martínez-Bello, D. A., López-Quílez, A., & Torres Prieto, A. (2017). Relative risk estimation of dengue disease at small spatial scale. International Journal of Health Geographics, 16(1), 1–15.  https://doi.org/10.1186/s12942-017-0104-x.CrossRefGoogle Scholar
  33. 33.
    Oliveira, F. L. P., Cançado, A. L. F., de Souza, G., Moreira, G. J. P., & Kulldorff, M. (2018). Border analysis for spatial clusters. International Journal of Health Geographics, 17(1), 1–10.  https://doi.org/10.1186/s12942-018-0124-1.CrossRefGoogle Scholar
  34. 34.
    Lawson, A. (2001). Statistical methods in spatial epidemiology. Chichester: Wiley.Google Scholar
  35. 35.
    Pfeiffer, D. U., Robinson, T., Stevenson, M., Stevens, K., Rogers, D., & Clement, A. (2008). Spatial analysis in epidemiology. Oxford Biology, 19(2), 148–149.  https://doi.org/10.1073/pnas.0703993104. (Paperback).Google Scholar
  36. 36.
    Kulldorff, M. (1999). An isotonic spatial scan statistic for geographical disease surveillance. Journal of the National Institute of Public Health, 48(2), 94–101.Google Scholar
  37. 37.
    Khalid, B., & Ghaffar, A. (2015). Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. International Journal of Biometeorology, 59(11), 1721–1746.  https://doi.org/10.1007/s00484-015-0982-1.CrossRefGoogle Scholar
  38. 38.
    Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.  https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.CrossRefGoogle Scholar
  39. 39.
    Hinman, S. E., Blackburn, J. K., & Curtis, A. (2006). Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906-1909: Evaluating local clustering with the Gi* statistic. International Journal of Health Geographics, 5, 13.  https://doi.org/10.1186/1476-072X-5-13.CrossRefGoogle Scholar
  40. 40.
    Duncan, E. W., White, N. M., & Mengersen, K. (2017). Spatial smoothing in Bayesian models: A comparison of weights matrix specifications and their impact on inference. International Journal of Health Geographics, 16(47), 1–16.  https://doi.org/10.1186/s12942017-0120-x.Google Scholar
  41. 41.
    Chief Medical Officer of the Health (CMOH), Paschim Medinipur (2017) under Department of Health and Family welfare, Government of West Bengal. Collected dengue report as hard copy from Kharagpur Municipality on 22nd December, 2017.Google Scholar
  42. 42.
    Bowman, L. R., Runge-Ranzinger, S., & McCall, P. J. (2014). Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Neglected Tropical Diseases, 8(5), e2848.  https://doi.org/10.1371/journal.pntd.0002848.CrossRefGoogle Scholar
  43. 43.
    Census of India, West Bengal State. (2011). Office of the Registrar General and Census Commissioner, India 2/A, Man Singh Road, New Delhi, 110011, India. www.indiacensus.gov.in. Accessed 26 Nov 2018.
  44. 44.
    Wan-Norafikah, O., Nazni, W. A., Noramiza, S., Shafa’ar-Ko’Ohar, S., Heah, S. K., Nor-Azlina, A. H., et al. (2012). Distribution of Aedes mosquitoes in three selected localities in Malaysia. Sains Malaysiana, 41(10), 1309–1313.Google Scholar
  45. 45.
    Cheong, Y. L., Leitao, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spatial and Spatio-Temporal Epidemiology, 10, 75–84.  https://doi.org/10.1016/j.sste.2014.05.002.CrossRefGoogle Scholar
  46. 46.
    Richards, S. L., Ponnusamy, L., Unnasch, T. R., Hassan, H. K., Apperson, C. S., Apperson, C. S., et al. (2006). Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. Journal of Medical Entomology, 43(3), 543–551.  https://doi.org/10.1093/jmedent/43.3.543.CrossRefGoogle Scholar
  47. 47.
    Esri, R. (2012). ArcGIS desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.Google Scholar
  48. 48.
    Tango, T., & Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics, 4, 11.  https://doi.org/10.1186/1476-072X-4-11.CrossRefGoogle Scholar
  49. 49.
    Huang, L., Tiwari, R. C., Zou, Z., Kulldorff, M., & Feuer, E. J. (2009). Weighted normal spatial scan statistic for heterogeneous population data. Journal of the American Statistical Association, 104(487), 886–898.  https://doi.org/10.1198/jasa.2009.ap07613.CrossRefGoogle Scholar
  50. 50.
    Prates, M. O., Kulldorff, M., & Assunção, R. M. (2014). Relative risk estimates from spatial and space-time scan statistics: Are they biased? Statistics in Medicine, 33(15), 2634–2644.  https://doi.org/10.1002/sim.6143.CrossRefGoogle Scholar
  51. 51.
    Wakefield, J., & Elliott, P. (1999). Issues in the statistical analysis of small area health data. Statistics in Medicine, 18, 2377–2399.CrossRefGoogle Scholar
  52. 52.
    Mugglin, A. S., Carlin, B. P., Zhu, L., & Conlon, E. (1999). Bayesian areal interpolation, estimation, and smoothing: An inferential approach for geographic information systems. Environment and Planning A, 31(8), 1337–1352.  https://doi.org/10.1068/a311337.CrossRefGoogle Scholar
  53. 53.
    Kulldorff, B. M. (2015). SaTScan user guide V9.5 (pp. 1–113).Google Scholar
  54. 54.
    Bhunia, G. S., Siddiqui, N. A., Shit, P. K., Chatterjee, N., & Sinha, S. K. (2016). Spatial clustering of Plasmodium falciparum in Bihar (India) from 2007 to 2015. Spatial Information Research, 24(6), 639–648.CrossRefGoogle Scholar
  55. 55.
    Méndez-Lázaro, P., Muller-Karger, F. E., Otis, D., McCarthy, M. J., & Peña-Orellana, M. (2014). Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico. International Journal of Environmental Research and Public Health, 11(9), 9409–9428.  https://doi.org/10.3390/ijerph110909409.CrossRefGoogle Scholar
  56. 56.
    Akter, R., Naish, S., Hu, W., & Tong, S. (2017). Socio-demographic, ecological factors and dengue infection trends in Australia. PLoS ONE, 12(10), 1–18.  https://doi.org/10.1371/journal.pone.0185551.CrossRefGoogle Scholar
  57. 57.
    Chu, H. J., Chan, T. C., & Jao, F. J. (2013). GIS-aided planning of insecticide spraying to control dengue transmission. International Journal of Health Geographics, 12, 42.  https://doi.org/10.1186/1476-072X-12-42.CrossRefGoogle Scholar

Copyright information

© Korean Spatial Information Society 2018

Authors and Affiliations

  1. 1.Department of Geography and Environment ManagementVidyasagar UniversityMidnaporeIndia

Personalised recommendations