Advertisement

Learning based end effector tracking control of a mobile manipulator for performing tasks on an uneven terrain

  • Beteley Teka
  • Rekha Raja
  • Ashish DuttaEmail author
Regular Paper
  • 2 Downloads

Abstract

A Mobile manipulator (MM) combines the ability to move on an uneven terrain and perform a desired task using the manipulator arm, like drilling, welding, pick and place, etc. However, due to slip, modeling and sensor errors during motion, the MM tends to deviate from the desired end effector path. The MM considered in this paper consists of a 10 DOF vehicle and a 4 DOF arm. As the system is redundant, the standard jacobian based pseudo inverse methods for finding the inverse kinematics solution cannot be used in real time and are very complex. Therefore, a learning based method using a two stage KSOM network has been used to learn the inverse kinematics solution and also track the end effector during motion. In the first stage the KSOM performs the redundancy resolution of the system and in the second stage it corrects the error during the actual motion. The forward kinematics model of the mobile manipulator is used to train the KSOM network, with the manipulability measure of the arm, joint angles of the system and the wheel terrain contact as constraints. Once the network is trained for a particular terrain, the corresponding joint angles and wheel velocities for tracking a desired end effector trajectory can be found in real time. Simulation and experimental results for tracking different end effector trajectories on an uneven terrain, proves the efficiency of the proposed method. The experimental results prove that the proposed method could track the end effector trajectory with an average error of less than 2 cm.

Keywords

KSOM Redundancy resolution Inverse kinematics Mobile manipulator 

Notes

References

  1. Avanzini, G.B., Zanchettin, A.M., Rocco, P.: Constrained model predictive control for mobile robotic manipulators. Robotica (2017).  https://doi.org/10.1017/s0263574717000133 Google Scholar
  2. Barreto, G.A., Araujo, A.F.R., Ritter, H.J.: Self-organizing feature maps for modeling and control of robotic manipulators. J Intell Robot Syst 36(4), 407–450 (2003).  https://doi.org/10.1023/a:1023641801514 CrossRefzbMATHGoogle Scholar
  3. Bayle, B., Renaud, M., Fourquet, J.-Y.: Nonholonomic mobile manipulators: kinematics, velocities and redundancies. J Intell Robot Syst 36, 45–63 (2003).  https://doi.org/10.1023/a:1022361914123 CrossRefGoogle Scholar
  4. Berntorp, K., Arzen, K.-E., Robertsson, A. (2012) Mobile manipulation with a kinematically redundant manipulator for a pick-and-place scenario. In: IEEE International Conference on Control Applications (CCA), pp. 1596–1602.  https://doi.org/10.1109/cca.2012.6402361
  5. Cao, Z., Cheng, L., Zhou, C., et al.: Spiking neural network-based target tracking control for autonomous mobile robots. Neural Comput Appl 26, 1839–1847 (2015).  https://doi.org/10.1007/s00521-015-1848-5 CrossRefGoogle Scholar
  6. Chen, N., Song, F., Li, G., Sun, X., Ai, C.: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Commun Nonlinear Sci Numer Simul 18(10), 2885–2899 (2013).  https://doi.org/10.1016/j.cnsns.2013.02.002 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chiu, C.H., Lin, C.M.: Control of an omnidirectional spherical mobile robot using an adaptive Mamdani-type fuzzy control strategy. Neural Comput Appl (2016).  https://doi.org/10.1007/s00521-016-2769-7 Google Scholar
  8. Craig, J.J.: Introduction to robotics: mechanics and control, 3rd edn. Pearson Education, New York (2004)Google Scholar
  9. Ding, L., Xia, K., Gao, H., Liu, G.: Robust adaptive control of door opening by a mobile rescue manipulator based on unknown-force-related constraints estimation. Robotica (2017).  https://doi.org/10.1017/S0263574717000200 Google Scholar
  10. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Netw 9, 589–600 (1998).  https://doi.org/10.1109/72.701173 CrossRefGoogle Scholar
  11. Galicki, M.: Task space control of mobile manipulators. Robotica 29(2), 221–232 (2011).  https://doi.org/10.1017/s026357471000007x CrossRefGoogle Scholar
  12. Hoang, N.-B., Kang, H.-J.: Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force. Neurocomputing 188, 12–22 (2016).  https://doi.org/10.1016/j.neucom.2015.02.101 CrossRefGoogle Scholar
  13. Hu, H., Woo, P.-Y.: Fuzzy supervisory sliding-mode and neural- network control for robotic manipulators. IEEE Trans Ind Electron 53(3), 929–940 (2006).  https://doi.org/10.1109/tie.2006.874261 CrossRefGoogle Scholar
  14. Iagnemma, K., Dubowsky, S.: Mobile robots in rough terrain, estimation, motion planning, and control with application to planetary MMs. STAR 12, 1–15 (2004)Google Scholar
  15. Kohonen, T.: Self-organization and associative memory. Springer Ser Inform Sci 8, 119–157 (1988).  https://doi.org/10.1007/978-3-642-88163-3 MathSciNetzbMATHGoogle Scholar
  16. Kumar, S., Premkumar, P., Dutta, A., Behera, L.: Visual motor control of a 7DOF redundant manipulator using redundancy preserving learning network. Robotica 28(6), 795–810 (2010).  https://doi.org/10.1017/s026357470999049x CrossRefGoogle Scholar
  17. Li, Z., Ge, S.S.: Fundamentals in modeling and control of mobile manipulators. Taylor & Francis Group LLC, Boca Raton (2013)Google Scholar
  18. Li, Z., Gu, J., Ming, A., Xu, C.: Intelligent complaint force/motion control of nonholonomic mobile manipulator working on the non-rigid surface. Neural Comput Appl 15(3–4), 204–216 (2006).  https://doi.org/10.1007/s00521-005-0021-y CrossRefGoogle Scholar
  19. Limtrakul, S., Arnonkijpanich, B.: Supervised learning based on the self-organizing maps for forward kinematic modeling of Stewart platform. Neural Comput Appl. 10, 25 (2017).  https://doi.org/10.1007/s00521-017-3095-4 Google Scholar
  20. Lin, S., Goldenberg, A.A.: Neural-network control of mobile manipulators. IEEE Trans Neural Netw 12(5), 1121–1133 (2001).  https://doi.org/10.1109/72.950141 CrossRefGoogle Scholar
  21. Lu, L., Wen, J.T.: Human-directed coordinated control of an assistive mobile manipulator. Int J Intell Robot Appl 1, 104–120 (2017)CrossRefGoogle Scholar
  22. Martinetz, T., Ritter, H., Schulten, K. (1990) Learning of visuomotor-coordination of a robot arm with redundant degrees of freedom. In: Proceedings of the international conference on parallel processing in neural systems and computers (ICNC), 431–434. Elsevier, Dusseldorf and AmsterdamGoogle Scholar
  23. Oubbati, M., Schanz, M., Levi P. (2005) Kinematic and dynamic adaptive control of a nonholonomic mobile robot using a RNN. In: Proceedings of IEEE international symposium on computational intelligence in robotics and automation.  https://doi.org/10.1109/cira.2005.1554250
  24. Pagliari, D., Pinto, L.: Calibration of kinect for xbox one and comparison between the two generations of Microsoft sensors. Sensors 15(11), 27569–27589 (2015).  https://doi.org/10.3390/s151127569 CrossRefGoogle Scholar
  25. Palmieri, N., Yang, X.S., De Rango, F., et al.: Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption. Neural Comput Appl (2017).  https://doi.org/10.1007/s00521-017-2998-4 Google Scholar
  26. Park, J.H., Shin, Y.D., Bae, J.H., Baeg, M.H.: Spatial uncertainty model for visual features using a Kinect™ sensor. Sensors 12(7), 8640–8662 (2012).  https://doi.org/10.3390/s120708640 CrossRefGoogle Scholar
  27. Point Cloud Library (2017), “Transformation estimation using SVD,” http://docs.pointclouds.org/trunk/classpcl_1_1registration_1_1_transformation_estimation_s_v_d.html. Accessed 10 Apr 2017
  28. Prem Kumar, P., Behera, L.: Visual servoing of redundant manipulator with Jacobian matrix estimation using self-organizing map. Robot Auton Syst 58(8), 978–990 (2010).  https://doi.org/10.1016/j.robot.2010.04.001 CrossRefGoogle Scholar
  29. Raja, R., Dutta, A., Dasgupta, B. (2014) KSOM based learning for cooperative motion of a redundant MM-manipulator on an uneven terrain. In: 13th IEEE international conference on control, automation, robotics and vision, Marina Bay Sands, Singapore (ICARCV 2014).  https://doi.org/10.1109/icarcv.2014.7064568
  30. Seelinger, M., Yoder, J.-D., Baumgartner, E.T., Skaar, S.B.: High-precision visual control of mobile manipulators. IEEE Trans Robot Autom 18(6), 957–965 (2002).  https://doi.org/10.1109/tra.2002.805647 CrossRefGoogle Scholar
  31. Siciliano, B.: Kinematic control of redundant robot manipulators: a tutorial. J Intell Robot Syst 3(3), 201–212 (1990).  https://doi.org/10.1007/bf00126069 CrossRefGoogle Scholar
  32. Soylu, S., Buckham, B.J., Podhorodeski, R.P.: Redundancy resolution for underwater mobile manipulators. J Ocean Eng 37(2–3), 325–343 (2010).  https://doi.org/10.1016/j.oceaneng.2009.09.007 CrossRefGoogle Scholar
  33. Sturm, J., Burgard, W. (2013) Learning probabilistic models for mobile manipulation robots. In: IJCAI 13 Proceedings of the Twenty-third international joint conference on artificial intelligence, pp. 3131–3135. https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6585
  34. Tang, L., Liu, Y.J., Tong, S.: Adaptive neural control using reinforcement learning for a class of robot manipulator. Neural Comput Appl 25, 135–141 (2014).  https://doi.org/10.1007/s00521-013-1455-2 CrossRefGoogle Scholar
  35. Van Cuong, P., Nan, W.Y.: Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Comput Appl 27, 525–536 (2016).  https://doi.org/10.1007/s00521-015-1873-4 CrossRefGoogle Scholar
  36. Xia, K., Gao, H., Ding, L., et al.: Trajectory tracking control of wheeled mobile manipulator based on fuzzy neural network and extended Kalman filtering. Neural Comput Appl (2016).  https://doi.org/10.1007/s00521-016-2643-7 Google Scholar
  37. Xiao, L., Liao, B., Li, S., Zhang, Z., et al.: Design and analysis of FTZNN applied to real-time solution of nonstationary lyapunov equation and tracking control of wheeled mobile manipulator. IEEE Trans Ind Inform (2017).  https://doi.org/10.1109/tii.2017.2717020 Google Scholar
  38. Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network- based sliding mode approach. IEEE Trans Syst Man Cybern B Cybern 39(3), 788–799 (2009).  https://doi.org/10.1109/tsmcb.2008.2009464 CrossRefGoogle Scholar
  39. Yoshikawa, T.: Manipulability of robotic mechanisms. Int J Robot Res 4(2), 3–9 (1985).  https://doi.org/10.1177/027836498500400201 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIIT KanpurKanpurIndia
  2. 2.University of California DavisDavisUSA

Personalised recommendations