Advertisement

Nano-assembly and welding of gold nanorods based on DNA origami and plasmon-induced laser irradiation

  • Yanting Liu
  • Yang Liu
  • Yajing Shen
Regular Paper
  • 266 Downloads

Abstract

The bottom-up organization of noble metal nanostructures with nanometer-scale precision is an important goal in nanotechnology. Owing to their unique localized surface plasmon resonance, well-defined metal nanostructures arrays could be used to develop applications in nano-photonics, nano-plasmonics, and nano-electronics. This article proposes an alternative pathway of a controllable approach to assemble and weld together the gold nanostructures. As a typical plasmonic nanostructure, the gold nanorods (Au NRs) was synthesized by the classical seed-mediated growth method. Based on the recognition of biomolecules through complementary DNA hybridization, we used DNA origami strategy for controllable assembly of Au NRs. Rectangular DNA origami as a template can induce the geometrically assembled of Au NRs. We designed and fabricated tip-to-tip Au NRs dimers on the DNA templates. Then,the follow-up formation of nanojunctions between assembled tip-to-tip Au NRs dimers Au NRs was conducted by irradiating infrared femtosecond pulses laser. The ability to coupling plasmonic nanostructures by assembly and nano-welding could be fundamental to developing novel optical properties and ensuring materials.

Keywords

Gold nanorods DNA origami Assembly Nano-welding 

Notes

Acknowledgements

This work was partly supported by National Science Foundation of China (61773326), Shen Zhen (China) Basic Research Project (JCYJ20160329150236426).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andersen, E.S., et al.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73 (2009)CrossRefGoogle Scholar
  2. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012)CrossRefGoogle Scholar
  3. Chen, H., Shao, L., Li, Q., Wang, J.: Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)CrossRefGoogle Scholar
  4. Chen, Z., Lan, X., Chiu, Y.-C., Lu, X., Ni, W., Gao, H., Wang, Q.: Strong chiroptical activities in gold nanorod dimers assembled using DNA origami templates. ACS Photonics 2, 392–397 (2015)CrossRefGoogle Scholar
  5. Ekici, O., Harrison, R., Durr, N., Eversole, D., Lee, M., Ben-Yakar, A.: Thermal analysis of gold nanorods heated with femtosecond laser pulses. J. Phys. D Appl. Phys. 41, 185501 (2008)CrossRefGoogle Scholar
  6. Fontana, J., et al.: Widely tunable infrared plasmonic nanoantennas using directed assembly advanced. Opt. Mater. 5, 1700335 (2017)CrossRefGoogle Scholar
  7. González-Rubio, G., et al.: Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods. Nano Lett. 15, 8282–8288 (2015)CrossRefGoogle Scholar
  8. González-Rubio, G., Guerrero-Martínez, A., Liz-Marzán, L.M.: Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Accounts Chem. Res. 49, 678–686 (2016)CrossRefGoogle Scholar
  9. Herrmann, L.O., et al.: Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)CrossRefGoogle Scholar
  10. Hu, M., et al.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)CrossRefGoogle Scholar
  11. Hung, A.M., Micheel, C.M., Bozano, L.D., Osterbur, L.W., Wallraff, G.M., Cha, J.N.: Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotechnol. 5, 121 (2010)CrossRefGoogle Scholar
  12. Kershner, R.J., et al.: Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4, 557 (2009)CrossRefGoogle Scholar
  13. Klein, W.P., et al.: Multiscaffold DNA origami nanoparticle waveguides. Nano Lett. 13, 3850–3856 (2013)CrossRefGoogle Scholar
  14. Lan, X., Chen, Z., Dai, G., Lu, X., Ni, W., Wang, Q.: Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 135, 11441–11444 (2013)CrossRefGoogle Scholar
  15. Li, N., Tittl, A., Yue, S., Giessen, H., Song, C., Ding, B., Liu, N.: DNA-assembled bimetallic plasmonic nanosensors. Light Sci. Appl. 3, e226 (2014)CrossRefGoogle Scholar
  16. Lin, L., Liu, L., Peng, P., Zou, G., Duley, W.W., Zhou, Y.N.: situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 27, 125201 (2016)CrossRefGoogle Scholar
  17. Link, S., Burda, C., Mohamed, M., Nikoobakht, B., El-Sayed, M.A.: Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A 103, 1165–1170 (1999a)CrossRefGoogle Scholar
  18. Link, S., Burda, C., Nikoobakht, B., El-Sayed, M.: How long does it take to melt a gold nanorod? A femtosecond pump–probe absorption spectroscopic study. Chem. Phys. Lett. 315, 12–18 (1999b)CrossRefGoogle Scholar
  19. Liu, J., et al.: Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 5, 2240–2247 (2011)CrossRefGoogle Scholar
  20. Liu, N., Liedl, T.: DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018)CrossRefGoogle Scholar
  21. Ozin, G.A., et al.: Nanofabrication by self-assembly. Mater. Today 12, 12–23 (2009)CrossRefGoogle Scholar
  22. Pal, S., Deng, Z., Wang, H., Zou, S., Liu, Y., Yan, H.: DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 133, 17606–17609 (2011)CrossRefGoogle Scholar
  23. Pearson, A.C., Liu, J., Pound, E., Uprety, B., Woolley, A.T., Davis, R.C., Harb, J.N.: DNA origami metallized site specifically to form electrically conductive nanowires. J. Phys. Chem. B 116, 10551–10560 (2012)CrossRefGoogle Scholar
  24. Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M., Mulvaney, P.: Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005)CrossRefGoogle Scholar
  25. Petrova, H., Juste, J.P., Pastoriza-Santos, I., Hartland, G.V., Liz-Marzán, L.M., Mulvaney, P.: On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys. 8, 814–821 (2006)CrossRefGoogle Scholar
  26. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297 (2006)CrossRefGoogle Scholar
  27. Schreiber, R., et al.: Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 9, 74 (2014)CrossRefGoogle Scholar
  28. Son, M., Jeong, S., Jang, D.-J.: Laser-induced nanowelding of linearly assembled and silica-coated gold nanorods to fabricate Au@ SiO2 core-shell nanowires. J. Phys. Chem. C 118, 5961–5967 (2014)CrossRefGoogle Scholar
  29. Song, L., et al.: DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale 9, 7750–7754 (2017)CrossRefGoogle Scholar
  30. Steinhauer, C., Jungmann, R., Sobey, T.L., Simmel, F.C., Tinnefeld, P.: DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Edition 48, 8870–8873 (2009)CrossRefGoogle Scholar
  31. Tan, S.J., Campolongo, M.J., Luo, D., Cheng, W.: Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 6, 268 (2011)CrossRefGoogle Scholar
  32. Thacker, V.V., Herrmann, L.O., Sigle, D.O., Zhang, T., Liedl, T., Baumberg, J.J., Keyser, U.F.: DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 5, 3448 (2014)CrossRefGoogle Scholar
  33. Tran, T.-H., Nguyen, T.-D.: Controlled growth of uniform noble metal nanocrystals: aqueous-based synthesis and some applications in biomedicine. Colloids Surf. B 88, 1–22 (2011)CrossRefGoogle Scholar
  34. Vigderman, L., Khanal, B.P., Zubarev, E.R.: Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012)CrossRefGoogle Scholar
  35. Wang, F., Shen, Y.R.: General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006)CrossRefGoogle Scholar
  36. Wang, Z.G., Song, C., Ding, B.: Functional DNA nanostructures for photonic and biomedical applications. Small 9, 2210–2222 (2013)CrossRefGoogle Scholar
  37. Xu, A., Harb, J.N., Kostiainen, M.A., Hughes, W.L., Woolley, A.T., Liu, H., Gopinath, A.: DNA origami: the bridge from bottom to top. MRS Bull. 42, 943–950 (2017)CrossRefGoogle Scholar
  38. Xu, L., Kuang, H., Wang, L., Xu, C.: Gold nanorod ensembles as artificial molecules for applications in sensors. J. Mater. Chem. 21, 16759–16782 (2011)CrossRefGoogle Scholar
  39. Yang, X., Yang, M., Pang, B., Vara, M., Xia, Y.: Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015)CrossRefGoogle Scholar
  40. Yu, H.-D., Regulacio, M.D., Ye, E., Han, M.-Y.: Chemical routes to top-down nanofabrication. Chem. Soc. Rev. 42, 6006–6018 (2013)CrossRefGoogle Scholar
  41. Zhang, L., et al.: Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-IR range. Chem. Mater. 26, 1794–1798 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCity University of Hong KongHong KongPeople’s Republic of China
  2. 2.City University of Hong Kong Shenzhen Research InstituteShen ZhenPeople’s Republic of China

Personalised recommendations