Advertisement

Passive-active hybrid release strategy for micro-object separation task

  • Daniel Crimp
  • Syahir Suhaimi
  • Ebubekir AvciEmail author
Regular Paper
  • 173 Downloads

Abstract

While methods for analysis of microbial samples exist in microbiology, most take in data at a population level, and cannot account for small variations within groups. Single-cell analysis (SCA) enables access to more detailed information about a culture than common analysis techniques. Techniques for single-cell analysis exist, but are limited in terms of speed and dexterity. A robotic pick-and-place system could potentially be a viable, efficient method of facilitating SCA. In this paper, a simple pick-and-place system for microbiological applications is presented. Similar systems have been presented in literature with very good positional accuracy and reliability (which are desirable characteristics in a micromanipulation system), but there have been only few advances in minimizing complexity in such systems. Moreover, these systems suffer from domination of adhesion forces at micro-scale during releasing task. Using only two of 3-axes motorized stages and two end effectors; a hybrid passive-active release strategy is presented. The proposed system achieves semi-automated pick-and-place of spherical objects in the low end of the micrometer scale (5–50 \(\upmu \hbox {m}\)).

Keywords

Micro-manipulation Adhesion forces Micro-gripper 

Notes

Acknowledgements

Research supported by Massey University Research Fund (MURF) 2018.

Supplementary material

Supplementary material 1 (MP4 10162 KB)

References

  1. Avci, E., Hattori, T., Kamiyama, K., Kojima, M., Horade, M., Mae, Y., Arai, T.: Piezo-actuated parallel mechanism for biological cell release at high speed. Biomed. Microdevices 17(5), 98 (2015)CrossRefGoogle Scholar
  2. Bhringer, K.F., Fearing, R.S., Goldberg, K.Y.: Handbook of Indus-Trial Robotics, 2nd ed., vol. 55, pp. 1045–1066. Wiley, New York (2007)Google Scholar
  3. Boudaoud, M., Haddab, Y., Le Gorrec, Y.: Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Trans. Mechatron. 18(3), 1130–1139 (2013)CrossRefGoogle Scholar
  4. Chen, T., Pan, M., Wang, Y., Liu, J., Chen, L., Sun, L.: Manipulation of microobjects based on dynamic adhesion control. Int. J. Adv. Robot. Syst. 9(3), 89 (2012)CrossRefGoogle Scholar
  5. Chen, T., Sun, L., Chen, L., Rong, W., Li, X.: A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens. Actuators A Phys. 158(2), 320–327 (2010)CrossRefGoogle Scholar
  6. Chen, T., Wang, Y., Yang, Z., Liu, H., Liu, J., Sun, L.: A PZT actuated triple-finger gripper for multi-target micromanipulation. Micromachines 8(2), 33 (2017)CrossRefGoogle Scholar
  7. Chen, B.K., Zhang, Y., Sun, Y.: Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J. Microelectromech. Syst. 18(3), 652–659 (2009)CrossRefGoogle Scholar
  8. Chowdhury, S., Thakur, A., Svec, P., Wang, C., Losert, W., Gupta, S.K.: Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans. Autom. Sci. Eng. 11(2), 338–347 (2014)CrossRefGoogle Scholar
  9. Chu, H.K., Mills, J.K., Cleghorn, W.L.: Automated dual-arm micromanipulation with path planning for micro-object handling. Robot. Auton. Syst. 74(2015), 166–174 (2015)CrossRefGoogle Scholar
  10. Demaghsi, H., Mirzajani, H., Ghavifekr, H.B.: A novel electrostatic based microgripper (cellgripper) integrated with contact sensor and equipped with vibrating system to release particles actively. Microsyst. Technol. 20(12), 2191–2202 (2014)CrossRefGoogle Scholar
  11. Dumtre, A., Dubey, J.P., Ferguson, D.J., Bongrand, P., Azas, N., Puech, P.H.: Mechanics of the Toxoplasma gondii oocyst wall. Proc. Natl. Acad. Sci. 110(28), 11535–11540 (2013)CrossRefGoogle Scholar
  12. Fearing, R.S.: Survey of sticking effects for micro parts handling. In: Intelligent robots and systems, Pittsburgh (1995)Google Scholar
  13. Gauthier, M., Regnier, S., Rougeot, P.: Analysis of forces for micromanipulations in dry and liquid media. J. Micromechatron. 3(3–4), 389–413 (2006)CrossRefGoogle Scholar
  14. Horade, M., Kojima, M., Kamiyama, K., Kurata, T., Mae, Y., Arai, T.: Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator. J. Micromech. Microeng. 25(11), 115002 (2015)CrossRefGoogle Scholar
  15. Inoue, K., Matsuzaki, Y., Lee, S.: Micromanipulation using micro hand with two rotational fingers. J. Micro Nano Mechatron. 7(1–3), 33–44 (2012)CrossRefGoogle Scholar
  16. Kim, E., Kojima, M., Kamiyama, K., Horade, M., Mae, Y., Arai, T.: High-speed active release end-effector motions for precise positioning of adhered micro-objects. World J. Eng. Technol. 6(01), 81 (2017)CrossRefGoogle Scholar
  17. Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromechan. Microeng. 18(5), 8 (2008)Google Scholar
  18. Kim, E., Kojima, M., Kamiyama, K., Horade, M., Mae, Y., Arai, T.: Accurate releasing of biological cells using two release methods. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon (2016)Google Scholar
  19. Knig, K., Liang, H., Berns, M.W., Tromberg, B.J.: Cell damage by near-IR microbeams. Nature 377, 20–21 (1995)CrossRefGoogle Scholar
  20. Lambert, P., Rgnier, S.: Surface and contact forces models within the framework of microassembly. J. Micromechatron. 3(2), 123–157 (2006)CrossRefGoogle Scholar
  21. Liang, C., Wang, F., Shi, B., Huo, Z., Zhou, K., Tian, Y., Zhang, D.: Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens. Actuators A Phys. 269, 227–237 (2018)CrossRefGoogle Scholar
  22. Liu, J., Shi, C., Wen, J., Pyne, D., Liu, H., Ru, C., Sun, Y.: Automated vitrification of embryos: a robotics approach. IEEE Robot. Autom. Mag. 22(2), 33–40 (2015)CrossRefGoogle Scholar
  23. Mohanty, S.K., Rapp, A., Monajembashi, S., Gupta, P.K., Greulich, K.O.: Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm. Radiat. Res. 157(4), 378–385 (2002)CrossRefGoogle Scholar
  24. Nakajima, M., Takeuchi, M., Hisamoto, N., Fukuda, T., Hasegawa, Y., Huang, Q.: Novel in situ nanomanipulation integrated with SEM-CT imaging system. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm (2016)Google Scholar
  25. Pahwa, T., Gupta, S., Bansal, V., Prasad, B., Kumar, D.: Analysis and design optimization of laterally driven poly-silicon electro-thermal micro-gripper for micro-objects manipulation. In: COMSOL Conference, Bangalore (2012)Google Scholar
  26. Shin, J.H., Seo, J., Hong, J., Chung, S.K.: Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects. Sens. Actuators B Chem. 246, 415–420 (2017)CrossRefGoogle Scholar
  27. Ta, Q.M., Cheah, C.C.: Optical manipulation of multiple microscopic objects with brownian perturbations. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm (2016)Google Scholar
  28. Tseng, F.-G., Santra, T.S.: Essentials of single-cell analysis. Springer, Berlin (2016)CrossRefGoogle Scholar
  29. Volpe, G., Kurz, L., Callegari, A., Volpe, G., Gigan, S.: Speckle optical tweezers: micromanipulation with random light fields. Opt. Express 22(15), 18159–18167 (2014)CrossRefGoogle Scholar
  30. Wang, W.H., Liu, X.Y., Sun, Y.: Robust contact detection in micromanipulation using computer vision microscopy. In: International Conference of the IEEE Engineering in Medicine and Biology Society, New York (2006)Google Scholar
  31. Xie, H., Onal, C., Rgnier, S., Sitti, M.: Atomic Force Microscopy Based Nanorobotics: Modelling, Simulation, Setup Building and Experiments, vol. 71. Springer, Berlin (2011)Google Scholar
  32. Xu, Q.: Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sens. J. 15(10), 6017–6026 (2015)CrossRefGoogle Scholar
  33. Zhang, Y., Chen, B.K., Liu, X., Sun, Y.: Autonomous robotic pick-and-place of microobjects. IEEE Trans. Robot. 26(1), 200–207 (2010)CrossRefGoogle Scholar
  34. Zimmermann, S., Tiemerding, T., Haenssler, O.C., Fatikow, S.: Automated robotic manipulation of individual sub-micro particles using a dual probe setup inside the scanning electron microscope. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Mechatronics Department, School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations