Advertisement

Macrobenthic Assemblages of Intertidal Flats in Southern Patagonia, Argentina

  • Juan P. MartinEmail author
  • Zulma I. Lizarralde
  • Susana Pittaluga
  • Alicia M. Sar
  • Mario Perroni
  • Santiago Torres
Article
  • 16 Downloads

Abstract

The aim of this work was to characterize the macrobenthic community of intertidal flats in southern Patagonia, by identifying the faunal assemblages and analyzing their relationship with the main environmental factors. The study was conducted in four localities of southern Santa Cruz (Argentina): Bahía San Julián (49°18’S, 67°41’W) and the lower reaches of the estuaries of Río Santa Cruz (50°05’S, 68°29’W), Río Coyle (50°58’S, 69°16’W) and Río Gallegos (51°37’S, 69°02’W). Surveys were performed in spring 2015 and summer 2016 at the upper, middle and lower intertidal levels. Four sediment samples were collected per intertidal level at each locality in each sampling period with a corer (0.00785 m2) up to 20 cm in depth. The organisms were separated using a 0.5 mm mesh sieve for subsequent identification and quantification. To explore possible spatial variations in the community, environmental and abundance data were analyzed using univariate and multivariate statistics. Intertidal level, substrate grain size and organic matter content were determinant factors of distribution of benthic assemblages. The Darina solenoides-Scolecolepides uncinatus-Eteone sculpta assemblage was characteristic of sand-mud substrates with dominance of silt-clay and greatest organic matter content of upper and middle intertidal. The D. solenoides-Ampelisca sp. assemblage was characteristic of the lower intertidal, with dominance of fine sand. The presence of saltmarshes was also a factor determining benthic assemblages at the upper intertidal of the estuarine localities. This work provides useful information to implement adequate management actions to protect the lower reaches of the Río Santa Cruz estuary.

Keywords

Benthic community Infauna Macrotidal flats Saltmarshes Estuaries Río Santa Cruz 

Notes

Acknowledgements

The authors thank Carlos Caminos and Raúl Fernández for their assistance in sampling, separation and quantification of organisms, D. Grima for preparing the map, and anonymous reviewers for their constructive and valuable comments and suggestions. This study was supported by the Universidad Nacional de la Patagonia Austral (PI 29A/333).

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical Methods. PRIMER-E, PlymouthGoogle Scholar
  3. Aprovechamientos hidroeléctricos del río Santa Cruz: estudio de impacto ambiental (2017) Capítulo 4. Línea de base ambiental: hidrología e hidrosedimentología. http://gobierno.santacruz.gov.ar/ambiente/audiencia_publica2017/Rio_Santa_Cruz/EBISA/Cap4%20-%20Linea%20de%20Base/4.2.4%20%E2%80%93%20HIDROLOG%C3%8DA%20e%20HIDROSEDIMENTOLOG%C3%8DA.pdf. Accessed 22 Aug 2018
  4. Armonies W, Hellwig-Armonies M (1987) Synoptic patterns of meiofaunal and macrofaunal abundances and specific composition in littoral sediments. Helgoländer Meeresun 41:83–111CrossRefGoogle Scholar
  5. Avila-Serrano GE, Flessa KW, Téllez-Duarte MA, Cintra-Buenrostro CE (2006) Distribution of the intertidal macrofauna of the Colorado River Delta, northern gulf of California, Mexico. Cienc Mar 32:649–661CrossRefGoogle Scholar
  6. Bale AJ, Kenny AJ (2005) Chapter 2: sediment analysis and seabed characterisation. In: Eleftheriou A, McIntyre A (eds) Methods for the study of marine benthos. Blackwell Science Ltd., Oxford, pp 43–86CrossRefGoogle Scholar
  7. Bell S (1980) Meiofauna-macrofauna interactions in a high salt marsh habitat. Ecol Monogr 50:487–505CrossRefGoogle Scholar
  8. Beukema JJ (1976) Biomass and species richness of the macro-benthic animals living on the tidal flats of the Dutch Wadden Sea. Neth J Sea Res 10:236–261CrossRefGoogle Scholar
  9. Beukema JJ (1989) Long-term changes in macrozoobenthic abundance on the tidal flats of the western part of the Dutch Wadden Sea. Helgol Mar Res 43(3):405–415Google Scholar
  10. Beukema JJ, Dekker R (2011) Increasing species richness of the macrozoobenthic fauna on tidal flats of the Wadden Sea by local range expansion and invasion of exotic species. Helgol Mar Res 65:155–164CrossRefGoogle Scholar
  11. Blake JA (1983) Polychaetes of the family Spionidae from South America, Antarctica, and adjacent seas and islands. Antarct Res Ser 39(3):205–288CrossRefGoogle Scholar
  12. Bortolus A, Schwindt E, Iribarne O (2002) Positive plant–animal interactions in the high marsh of an Argentinean coastal lagoon. Ecology 83(3):733–742Google Scholar
  13. Bortolus A, Schwindt E, Bouza PJ, Idaszkin YL (2009) A characterization of patagonian salt marshes. Wetlands 29(2):772–780CrossRefGoogle Scholar
  14. Braga CF, Monteiro VF, Rosa-Filho JS, Beasley CR (2011) Benthic macroinfaunal assemblages associated with Amazonian saltmarshes. Wetl Ecol Manag 19:257–272CrossRefGoogle Scholar
  15. Brenchley GA (1982) Mechanisms of spatial competition in marine soft-bottom communities. J Exp Mar Biol Ecol 60:17–33CrossRefGoogle Scholar
  16. Brown AC, McLachlan A (1990) Ecology of sandy shores. Elsevier, AmsterdamGoogle Scholar
  17. Cañete JI, Astorga MS, Santana M, Palacios M (2010) Abundancia y distribución espacial de Scolecolepides uncinatus Blake, 1983 (Polychaeta: Spionidae) y características sedimentológicas en Bahía Lomas, Tierra del Fuego, Chile. An Inst Patagon 38(2):81–94Google Scholar
  18. Capehart AA, Hackney CT (1989) The potential role of roots and rhizomes in structuring salt marsh benthic communities. Estuaries 12:119–122CrossRefGoogle Scholar
  19. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, PlymouthGoogle Scholar
  20. Cruz Sueiro M, Bortolus A, Schwindt E (2012) The role of the physical structure of Spartina densiflora Brong. in structuring macroinvertebrate assemblages. Aquat Ecol 46:25–36CrossRefGoogle Scholar
  21. Day JW, Hall CAS, Kemp WM, Yañez-Arancibia A (1989) The estuarine bottom and benthic subsystem. In: Day JW (ed) Estuarine ecology. Wiley, New York, pp 338–376Google Scholar
  22. Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2015) InfoStat versión 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar
  23. Dittmann S (2000) Zonation of benthic communities in a tropical tidal flat of north-east Australia. J Sea Res 43:33–51CrossRefGoogle Scholar
  24. Dittmann S (2002) Benthic fauna in tropical tidal flats -a comparative perspective. Wetl Ecol Manag 10:189–195CrossRefGoogle Scholar
  25. Dittmann S, Vargas JA (2001) Tropical tidal flat benthos compared between Australia and Central America. In: Reise K (ed) Ecological comparisons of sedimentary shores. Ecological studies, Vol 151. Springer-Verlag, New York, pp 275–293CrossRefGoogle Scholar
  26. Dyer KR, Christie MC, Wright EW (2000) The classification of intertidal mudflats. Cont Shelf Res 20(10):1039–1060CrossRefGoogle Scholar
  27. Elías R (1995) The subtidal macroinfauna from soft-bottom substrate of the Blanca bay (Argentine). Thalassas 11:73–86Google Scholar
  28. Elías R, Ieno E (1993) La asociacion de Laeonereis acuta Treadwell, 1923 (Polychaeta, Nereididae) en la Bahía Blanca, Argentina. Iheringia 75:3–13Google Scholar
  29. Escofet A, Orensanz JM, Olivier SR, Scarabino V (1978) Biocenología bentónica del Golfo San Matías (Río Negro, Argentina): metodología, experiencias y resultados del estudio ecológico de un gran espacio geográfico en América latina. An Inst Cienc del Mar y Limnol Univ Nal Autón México 5(1):59–82Google Scholar
  30. Espoz C, Ponce A, Matus R, Blank O, Rozbaczylo N, Sitters HP, Rodriguez S, Dey AD, Niles LJ (2008) Trophic ecology of the Red Not Calidris canutus rufa at Bahia Lomas, Tierra del Fuego, Chile. Wader Study Group Bulletin 115(2):69–79Google Scholar
  31. Falabella V, Campagna C, Croxall J (2009) Atlas del Mar Patagónico. Especies y Espacios. Buenos Aires, Wildlife Conservation Society y BirdLife International. http://www.atlas-marpatagonico.org. Accessed 22 March 2018
  32. Ferrari S, Albrieu C, Gandini P (2002) Importance of the Rio Gallegos estuary, Santa Cruz, Argentina, for migratory shorebirds. Wader Study Group Bull 99:35–40Google Scholar
  33. Ferrari S, Lizarralde Z, Pittaluga S, Albrieu C (2015) Dieta y comportamiento de alimentación de Haematopus leucopodus durante el período pos-reproductivo en el estuario del río Gallegos, Patagonia, Argentina. Ornitol Neotrop 26:39–49Google Scholar
  34. Flynn MN, Tararam AS, Wakabara Y (1996) Effects of habitat complexity on the structure of macrobenthic associations in a Spartina alterniflora marsh. Rev Bras Oceanogr 44:9–21CrossRefGoogle Scholar
  35. Foster NM, Hudson MD, Bray S, Nicholls RJ (2013) Intertidal mudflat and saltmarsh conservation and sustainableuse. in the UK: a review. J Environ Manag 126:96–104CrossRefGoogle Scholar
  36. Gillanders BM (2007) Linking terrestrial-freshwater and marine environments: an example from estuarine systems. In: Connell DS, Gillanders BM (eds) Marine ecology. Oxford University Press, Victoria, pp 252–277Google Scholar
  37. Glockzin M, Zettler ML (2008) Spatial macrozoobenthic distribution patterns in relation to major environmental factors. A case study from the Pomeranian Bay (southern Baltic Sea). J Sea Res 59:144–161CrossRefGoogle Scholar
  38. Hartman O (1964) Polychaeta errantia of Antarctica. Antarct Res Ser 3(1226):1–131Google Scholar
  39. Ituarte C, Martin JP, Zelaya DG (2012) A new species of Mysella from Patagonia (Bivalvia: Galeommatoidea). Nautilus 126:136–142Google Scholar
  40. Jackson D (1985) Invertebrate populations associated with Spartina anglica salt-marsh and adjacent inter-tidal mudflats. EBSA Bull 40:8–14Google Scholar
  41. Jaramillo E, Mulsow S, Navarro R (1985) Intertidal and subtidal macroinfauna in the Queule River estuary, south of Chile. Rev Chil Hist Nat 58:127–137Google Scholar
  42. Jaramillo E, Contreras H, Duarte C (2007) Community structure of the macroinfauna inhabiting tidal flats characterized by the presence of different species of burrowing bivalves in southern Chile. In: Relini G, Ryland J (eds) Biodiversity in enclosed seas and artificial marine habitats. Developments in hydrobiology, vol 193. Springer, DordrechtGoogle Scholar
  43. Jaramillo E, López J, Incera M, Lastra M, Contreras H, Duarte C (2008) Sedimentary characteristics, macroinfauna and types and abundances of bivalves in a tidal flat of the nord-Patagonic archipelago, Chile. Vie Milieu 58(1):11–23Google Scholar
  44. Lana PDL, Guiss C (1991) Influence of Spartina alterniflora on structure and temporal variability of macrobenthic associations in a tidal flat of Paranagua Bay (southeastern Brazil). Mar Ecol Prog Ser 73:231–244CrossRefGoogle Scholar
  45. Lin HJ, Hsu CB, Liao SH, Chen CP, Hsieh HL (2015) Effects of Spartina alterniflora invasion on the abundance and community of meiofauna in a subtropical wetland. Wetland 35(3):547–556CrossRefGoogle Scholar
  46. Little C (2000) The biology of soft shores and estuaries. Oxford University Press, OxfordGoogle Scholar
  47. Lizarralde ZI, Pittaluga S (2011) Distribution and temporal variability of the benthic fauna in a tidal flat of the Rio Gallegos estuary, Patagonia, Argentina. Thalassas 27:9–20Google Scholar
  48. Lizarralde Z, Ferrari S, Pittaluga S, Albrieu C (2010) Seasonal abundance and trophic ecology of Hudsonian Godwit (Limosa haemastica) at Río Gallegos estuary (Patagonia, Argentina). Ornitol Neotrop 21:283–294Google Scholar
  49. Lizarralde ZI, Pittaluga S, Perroni M (2017) Changes of benthic macrofaunal composition on a tidal flat of Río Gallegos estuary, Argentina. Thalassas 34:131–138.  https://doi.org/10.1007/s41208-017-0045-y CrossRefGoogle Scholar
  50. Lizarralde Z, Pittaluga S, Albarracín T, Perroni M (2018) Population dynamics and secondary production of Darina solenoides (Bivalvia: Mactridae) in the Río Gallegos estuary, southern Patagonia. Lat Am J Aquat Res 46(2):411–415CrossRefGoogle Scholar
  51. López Gappa J, Cruz Sueiro M (2007) The subtidal macrobenthic assemblages of Bahía San Sebastián (Tierra del Fuego, Argentina). Polar Biol 30(6):679–687CrossRefGoogle Scholar
  52. Martin JP, Bastida R (2008) Contribución de las comunidades bentónicas en la dieta del róbalo (Eleginops maclovinus) en la ría Deseado (Santa Cruz, Argentina). Lat Am J Aquat Res 36(1):1–13CrossRefGoogle Scholar
  53. Martin JP, Bastida R, Trassens M (2004) Polychaete assemblages of intertidal mixohaline flats of Bahía Samborombón (Río de la Plata estuary-Argentina). Thalassas 20:39–52Google Scholar
  54. Mc Lachlan A (1983) Sandy beaches ecology, a review. In: Mc Lachlan A, Erasmus T (eds) Sandy beaches as ecosystems. W. Junk, The Hague, pp 321–390CrossRefGoogle Scholar
  55. McCann SB (1980) Classification of tidal environments. In: McCann SB (ed) Sedimentary processes and animal sediment relationships in tidal environments, short course notes, Vol. 1. Geological Association Canada, St. Johns, pp 1–124Google Scholar
  56. McLusky D, Elliott M (2004) The estuarine ecosystem: ecology, threats and management. Oxford University Press, OxfordCrossRefGoogle Scholar
  57. Osenga GA, Coull BC (1983) Spartina alterniflora Loisel root structure and meiofaunal abundance. J Exp Mar Biol Ecol 67:221–225CrossRefGoogle Scholar
  58. Pascual M, Riva Rossi C, García Asorey M, Pellanda L (2005) Un análisis preliminar de los potenciales impactos de la construcción de las represas “Cóndor Cliff” y “La Barrancosa” sobre la fauna de peces del río Santa Cruz. Reporte Técnico 01/05 Grupo de Estudios de Salmónidos Anádromos, CENPAT-CONICET, pp 30Google Scholar
  59. Peterson CH (1991) Intertidal zonation of marine invertebrates in sand and mud. Am Sci 79:236–249Google Scholar
  60. Pittaluga S (2016) Caracterización de las comunidades bentónicas de fondos blandos del estuario del río Gallegos: su utilización en la detección de impactos antrópicos. MScTesis, Universidad Nacional de la Patagonia AustralGoogle Scholar
  61. Rader DN (1984) Salt-marsh benthic invertebrates: smallscale patterns of distribution and abundance. Estuaries 7:413–420CrossRefGoogle Scholar
  62. Raffaelli D, Hawkins S (1996) Intertidal ecology, 356 pp. Chapman & Hall, LondonCrossRefGoogle Scholar
  63. Reise K (1985) Tidal flat ecology. An experimental approach to species interactions. Ecol Stud 54, 191 pp. Springer-Verlag, BerlinGoogle Scholar
  64. Reise K (1991) Macrofauna in mud and sand of tropical and temperate tidal flats. In: Elliott M, Ducrotoy J (eds) Estuaries and coasts: spatial and temporal Intercomparisons. Olsen and Olsen, Fredensborg, pp 211–216Google Scholar
  65. Servicio de Hidrografia Naval (2017) Tabla de Mareas 2017 http://www.hidro.gov.ar/oceanografia/tmareas/form_tmareas.asp. Accessed 15 March 2017
  66. Stoner AW (1980) The role of seagrass biomass in the organization of benthic macrofaunal assemblages. Bull Mar Sci 30:537–551Google Scholar
  67. Tagliaferro M, Miserendino ML, Liberoff A, Quiroga A, Pascual M (2013) Dams in the last large free-flowing rivers of Patagonia, the Santa Cruz River, environmental features, and macroinvertebrate community. Limnologica 43:500–509CrossRefGoogle Scholar
  68. ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows. Software for canonical community ordination (v. 4). Microcomputer Power, IthacaGoogle Scholar
  69. Vargas JA (1987) The benthic community of an intertidal mud flat in the golf of Nicoya, Costa Rica. Description of the community. Rev Biol Trop 35:299–316Google Scholar
  70. Vargas JA (1996) Ecological dynamics of a tropical intertidal mudflat community. In: Nordstrom KF, Roman CT (eds) Estuarine shores: evolution, environments and human alterations. John Wiley and Sons, Ltd., Chichester, pp 355–371Google Scholar
  71. Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101CrossRefGoogle Scholar
  72. Wolff WJ (1983) Estuarine benthos. In: Ketchum BH (ed) Ecosystems of the world. Estuaries and enclosed seas. Elsevier, New York, pp 151–182Google Scholar
  73. Zaixso H, Sar A, Lizarralde Z, Martin JP (2017) Asociaciones macrobentónicas con presencia de mitílidos de la bahía San Julián (Patagonia austral, Argentina). Rev Biol Mar Oceanogr 52(2):311–323CrossRefGoogle Scholar
  74. Zar JH (1996) Biostatistical analysis. Prentice Hall, Inc, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Ciencias del Ambiente, Sustentabilidad y Recursos Naturales (ICASUR). Unidad Académica San JuliánUniversidad Nacional de la Patagonia AustralPuerto San JuliánArgentina
  2. 2.Instituto de Ciencias del Ambiente, Sustentabilidad y Recursos Naturales (ICASUR), Unidad Académica Río GallegosUniversidad Nacional de la Patagonia AustralRío GallegosArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations