Advertisement

Acute Toxicity of Mercury and Nervous Tissue Damage in Postlarvae and Juveniles of Litopenaeus vannamei

  • Sarahi Roos-Muñoz
  • Selene M. Abad-Rosales
  • Marisela Aguilar-JuárezEmail author
  • Martín G. Frías-Espericueta
  • Domenico Voltolina
Article
  • 40 Downloads

Abstract

Experiments were carried out to verify the existing information on the LC50 of waterborne Hg for L. vannamei postlarvae and determine that of juveniles. Additionally, the structure of different tissues of the organisms which survived the acute toxicity test was examined. The experiment with juveniles was performed after addition of 1.00, 0.75, 0.50, 0.25 and 0.10 mg/L of Hg (using HgCl2). For postlarvae, additions were 0.5, 0.4, 0.3, 0.2, 0.1 and 0.01 mg/L. Acute toxicity tests determined that, after 96 h of exposure to Hg, the respective LC50 values for juveniles and postlarvae of Litopenaeus vannamei were 0.50 and 0.25 mg/L. Although lower that the only value of LC50 known for L. vannamei postlarvae, these lethal concentrations are one order of magnitude higher than those known for larval and juvenile stages of other crustaceans, suggesting that L. vannamei has a high resistance to the toxic effects of waterborne Hg. The only histological damages in survivors to 96 h of exposure were observed in nervous tissues and consisted in the presence of necrotic cells. The degree of damage severity was related to the concentration of dissolved Hg, and the numbers of necrotic cells decreased progressively with increasing distance from the nerve ganglia. A safe level of mercury exposure for L. vannamei postlarvae would be 2.5 μg/L.

Keywords

Metals LC50 Histological effect Nervous system Shrimp 

Notes

Acknowledgments

The first author has received a scholarship for graduate studies from Consejo Nacional de Ciencia y Tecnología. This study was funded by PROFAPI 2014/003, 2015/004 and 2015/103, Programa de Mejoramiento al Profesorado UAS PTC-105.DSA/103.5/14/108.08, Consejo Nacional de Ciencia y Tecnología INFRA 2012-01-188029 and Programa para el Desarrollo del Personal Docente 511-6/17-2095 (CANE: año 3) grants.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alcivar-Warren A, Meehan-Meola D, Park SW, Xu Z, Delaney M, Zuniga G (2007) Shrimpmap: a low-density, microsatellite-based linkage map of the Pacific whiteleg shrimp, Litopenaeus vannamei: identification of sex-linked markers in linkage group 4. J Shellfish Res 6:1259–1277. https://doi.org/10.2983/0730-8000(2007)26[1259:SALMLM]2.0.CO;2Google Scholar
  2. Andrade VM, Aschner M, Marreilha dos Santos AP (2017) Neurotoxicity of metal mixtures. Advances in neurobiology. In: Aschner M, Costa L (eds). Springer Int Publish, Cham, pp 227–265Google Scholar
  3. Berntssen MHG, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65:55–72.  https://doi.org/10.1016/S0166-445X(03)00104-8 CrossRefGoogle Scholar
  4. Bruland KW, Franks RP, Knauer GA, Martin JH (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Anal Chim Acta 105:223–245.  https://doi.org/10.1016/S0003-2670(01)83754-5 CrossRefGoogle Scholar
  5. Buckman K, Taylor V, Broadley H, Hocking D, Balcom P, Mason R, Nislow K, Chen C (2017) Methylmercury bioaccumulation in an urban estuary: Delaware River, USA. Estuar Coast 40:1358–1370.  https://doi.org/10.1007/s12237-017-0232-3 CrossRefGoogle Scholar
  6. Carpenter DO (2001) Effects of metals on the nervous system of humans and animals. Int J Occup Med Environ Health 14:209–218Google Scholar
  7. Chourpagar AR, Kulkarni GK (2014) Effect of mercuric chloride on gill structure of a freshwater female crab, Barytelphusa cunicularis (Westwood). J Glob Biosci 3:423–427Google Scholar
  8. Chrak SR, Sujad N, Borana K (2014) Effect of mercuric chloride on histological structure of hepatopancreas of fresh water prawn Macrobrachium lamarrei lamarrei (H. Milne Edwards, 1837). Int J Fish Aquat Stud 1:49–52Google Scholar
  9. Das S, Sahu BK (2002) Toxicity of hg (II) to prawns Penaeus monodon and Penaeus indicus (Crustacea: Penaeidae) from Rushikulya estuary, bay of Bengal. Indian J Mar Sci 31:337–339Google Scholar
  10. Delgado-Alvarez C, Ruelas-Inzunza JR, Osuna-López JI, Voltolina D, Frías-Espericueta MG (2015) Mercury content in Litopenaeus vannamei from shrimp farms (NW Mexico). Chemosphere 119:1015–1020.  https://doi.org/10.1016/j.chemosphere.2014.08.079 CrossRefGoogle Scholar
  11. Devi M, Fingerman M (1995) Inhibition of the acetylcholinesterase activity in the central nervous tissue of the red swamp crayfish Procambarus clarkii, by mercury, cadmium and lead. Bull Environ Contam Toxicol 55:746–750.  https://doi.org/10.1007/BF00203762 CrossRefGoogle Scholar
  12. Fonseca-Arrifano GDP, De Oliveira MA, Souza-Monteiro JR, Rodriguez Burbano RM, Crespo-Lopez ME (2018) Role for apolipoprotein e in neurodegeneration and mercury intoxication. Front Biosci 10:229–241.  https://doi.org/10.2741/e819 Google Scholar
  13. Frías-Espericueta MG, Voltolina D, Osuna-López JI (2001) Acute toxicity of cadmium, mercury and lead to whiteleg shrimp (Litopenaeus vannamei) postlarvae. Bull Environ ContamToxicol 67:580–586.  https://doi.org/10.1007/s001280163 CrossRefGoogle Scholar
  14. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2:239–259.  https://doi.org/10.1016/j.jece.2013.12.019 CrossRefGoogle Scholar
  15. Griboff J, Horacek M, Wunderlina DA, Monferrana MV (2018) Bioaccumulation and trophic transfer of metals, as and se through a freshwater food web affected by antrophic pollution in Córdoba, Argentina. Ecotoxicol Environ Saf 148:275–284.  https://doi.org/10.1016/j.ecoenv.2017.10.028 CrossRefGoogle Scholar
  16. Hassan SA, Moussa EA, Abbott LC (2012) The effect of methylmercury exposure on early central nervous system development in the zebrafish (Danio rerio) embryo. J Appl Toxicol 32(9):707–713CrossRefGoogle Scholar
  17. Liao PY, Liu CW, Liu WY (2016) Bioaccumulation of mercury and polychlorinated dibenzo-p-dioxins and dibenzofurans in salty water organisms. Environ Monit Assess 188:12.  https://doi.org/10.1007/s10661-015-5019-z CrossRefGoogle Scholar
  18. Londhe S, Kamble N (2013) Histopathology of cerebro neuronal cells in freshwater snail Bellamya bengalensis: impact on respiratory physiology, by acute poisoning of mercuric and zinc chloride. Toxicol Environ Chem 95:304–317.  https://doi.org/10.1080/02772248.2013.771431 CrossRefGoogle Scholar
  19. Maiz-Larralde P (2008) Final-inventario nacional de liberaciones de mercurio-México 2004. Final report. México D.F.: Centro Nacional de Investigación y Capacitación Ambiental, INE, SEMARNATGoogle Scholar
  20. Mariño-Balsa JC, Poza E, Vázquez E, Beiras R (2000) Comparative toxicity of dissolved metals to early larval stages of Palaemon serratus, Maja squinado, and Homarus gammarus (Crustacea: Decapoda). Arch Environ Contam Toxicol 39:345–351.  https://doi.org/10.1007/s002440010114 CrossRefGoogle Scholar
  21. Miura K, Imura N (1987) Mechanism of methylmercury cytotoxicity. Crit Rev Toxicol 18:161–188.  https://doi.org/10.3109/10408448709089860 CrossRefGoogle Scholar
  22. Mohammed A (2013) Why are early life stages of aquatic organisms more sensitive to toxicants than adults? In: Sivakumar G (ed) New insights into toxicity and drug testing. INTECH, London, pp 49–62Google Scholar
  23. Naija A, Kestemont P, Chénais B, Haouas Z, Blust R, Helal AN, Marchand J (2018) Effects of hg sublethal exposure in the brain of peacock blennies Salaria pavo: molecular, physiological and histopathological analysis. Chemosphere 193:1094–1104.  https://doi.org/10.1016/j.chemosphere.2017.11.118 CrossRefGoogle Scholar
  24. Páez-Osuna F, Álvarez-Borrego S, Ruiz-Fernández AC, García-Hernández J, Jara-Marini M, Bergés-Tiznado M, Piñón-Gimate A, Soto-Jiménez MF, Alonso-Rodríguez R, Frías-Espericueta MG, Ruelas-Inzunza JR, Green-Ruiz C, Osuna-Martínez CC, Sanchez-Cabeza JA (2017) Environmental status of the Gulf of California: a pollution review. Earth-Sci Rev 166:181–205.  https://doi.org/10.1016/j.earscirev.2017.01.014 CrossRefGoogle Scholar
  25. Randhawa MA (2009) Calculation of LD50 values from the method of miller and Tainter, 1944. J Ayub Med Coll Abbottabad 21:184–185Google Scholar
  26. Richetti SK, Rosemberg DV, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD (2011) Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxicology 32:116–122.  https://doi.org/10.1016/j.neuro.2010.11.001 CrossRefGoogle Scholar
  27. Seebacher F, Franklin CE (2012) Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos Trans 367:1607–1614.  https://doi.org/10.1098/rstb.2012.0036 CrossRefGoogle Scholar
  28. Serfozo J (1993) Necrotic effects of the xenobiotics accumulation in the central nervous system of a crayfish (Astacus leptodactylus Eschz). Acta biol Szegediensis 39: 23-38. Doi:Google Scholar
  29. St-Amand L, Gagnon R, Packard TT, Savenkoff C (1999) Effects of inorganic mercury on the respiration and the swimming activity of shrimp larvae, Pandalus borealis. Comp Biochem Physiol 122C:33–43.  https://doi.org/10.1016/S0742-8413(98)10071-3 Google Scholar
  30. Usman N, Irawan B, Soegianto A (2013) Effect of copper on survival and osmoregulation in different life stages of white shrimp Litopenaeus vannamei Boone, 1931. Cah Biol Mar 54:191–197Google Scholar
  31. van den Brink NW, Scheiber IBR, de Jong ME, Braun A, Arini A, Basu N, van den Berg H, Komdeur J, Loonen MJJE (2018) Mercury associated neurochemical response in Arctic barnacle goslings (Branta leucopsis). Sci Total Environ 624:1052–1058CrossRefGoogle Scholar
  32. Vinod K, Bhat UG, Kusuma N (2004) Age-specific differences in sensitivity of the banana shrimp, Penaeus merguiensis (de man) to mercury toxicity. Indian J Fish 51:97–102Google Scholar
  33. Zhang Y, Ye B, Wang D (2010) Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 59:129–136.  https://doi.org/10.1007/s00244-009-9456-y CrossRefGoogle Scholar
  34. Zodrow JM, Stegeman JJ, Tanguay RL (2004) Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafrish. Aquat Toxicol 66:25–38.  https://doi.org/10.1016/j.aquatox.2003.07.002 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Doctorado en Recursos AcuáticosUniversidad Autónoma de SinaloaMazatlánMexico
  2. 2.Centro de Investigación en Alimentación y DesarrolloUnidad MazatlánMazatlánMexico
  3. 3.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico
  4. 4.Centro de Investigaciones Biológicas del NoroesteLaboratorio UAS-CIBNORMazatlánMexico

Personalised recommendations