Exploring the Suitable Temperature and Diet for Growth and Gastric Emptying Time of Juvenile Malabar Blood Snapper (Lutjanus malabaricus Bloch & Schneider, 1801)

  • Sabuj Kanti Mazumder
  • Mazlan Abd Ghaffar
  • Simon Kumar DasEmail author


In this study we analyzed the effects of water temperature and diet on the growth properties and gastric emptying period of juvenile Malabar blood snapper (Lutjanus malabaricus) over a 30 day experimental period. Fish were collected from a local hatchery of Pulau Ketam, Selangor, Malaysia and immediately transferred to flow-through sea water system and subjected to four different temperatures (22, 26, 30, and 34 °C) and two diets (formulated pellet and shrimp). Body weight gain, food consumption, food conversion ratio, food consumption efficiency, specific growth rate, relative growth rate, daily growth rate, and gastric emptying time were significantly influenced by temperature and diet (P < 0.05). The best food conversion ratio was with the shrimp fed group recorded at 30 °C (1.33 ± 0.08). The highest growth rate was also observed in the shrimp fed group at 30 °C (3.97 ± 0.57% day−1), and the lowest was observed in the formulated pellet fed group at 22 °C (1.63 ± 0.29% day−1). No significant difference was observed between the groups subjected to temperatures of 26 and 30 °C. Similarly, the lowest gastric emptying period was detected in the shrimp fed group at 30 °C (16 h), where the proportion of meal residues in the stomach decreased from 100% to less than 8% after 12 h of starvation. A significantly longer gastric emptying period was observed in the formulated pellet fed group at 22 °C (28 h). Overall, the best results were observed on shrimp fed group subjected to a 30 °C temperature. The data obtained from this study suggest that a shrimp diet fed on L. malabaricus at 30 °C will optimize the commercial production of this important fish species.


Malabar blood snapper Temperature Diet Growth Gastric emptying time Aquaculture 



This study was financially supported by Ministry of Science Technology and Innovation Malaysia (# 04-01-02-SF1208) and Institute of Climate Change, Universiti Kebangsaan Malaysia (# GUP-2015-025 & GUP-2017-023) to the corresponding author.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Árnason T, Björnsson B, Steinarsson A (2009) Allometric growth and condition factor of Atlantic cod (Gadus morhua) fed to satiation: effects of temperature and body weight. J Appl Ichthyol 25(4):401–406. Google Scholar
  2. Behrens MD, Lafferty KD (2007) Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes. Can J Fish Aquat Sci 64:867–873. Google Scholar
  3. Bendiksen EÅ, Jobling M, Arnesen A (2002) Feed intake of Atlantic salmon parr Salmo salar L. in relation to temperature and feed composition. Aquac Res 33(7):525–532. Google Scholar
  4. Björnsson B, Tryggvadóttir SV (1996) Effects of size on optimal temperature for growth and growth efficiency of immature Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 142(1):33–42. Google Scholar
  5. Björnsson B, Steinarsson A, Oddgeirsson M (2001) Optimal temperature for growth and feed conversion of immature cod (Gadus morhua L.). ICES J Mar Sci: J du Cons 58(1):29–38. Google Scholar
  6. Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Am Zool 11(1):99–113. Google Scholar
  7. Brett J (1979) 10-environmental factors and growth. Fish Physiol 8:599–675. Google Scholar
  8. Brett J, Shelbourn JE, Shoop CT (1969) Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J Fishs Board Can 26(9):2363–2394. Google Scholar
  9. Brown J, Pepin P, Methven D, Somerton D (1989) The feeding, growth and behaviour of juvenile cod, Gadus morhua L., in cold environments. J Fish Biol 35(3):373–380. Google Scholar
  10. Byström P, Andersson J, Kiessling A, Eriksson LO (2006) Size and temperature dependent foraging capacities and metabolism: consequences for winter starvation mortality in fish. Oikos 115(1):43–52. Google Scholar
  11. Castillo-Vargasmachuca S, Ponce-Palafox J, García-Ulloa M, Arredondo-Figueroa J, Ruiz-Luna A, Chávez E, Tacon A (2012) Effect of stocking density on growth performance and yield of subadult Pacific red snapper cultured in floating sea cages. Nort Amer J Aquacul 74(3):413–418. Google Scholar
  12. Castillo-Vargasmachuca S, Ponce-Palafox JT, Rodríguez-Chávez G, Arredondo-Figueroa JL, Chávez-Ortiz E, Seidavi A (2013) Effects of temperature and salinity on growth and survival of the Pacific red snapper Lutjanus peru (Pisces: Lutjanidae) juvenile. Lat Amer J Aquat Res 41(5):1013–1018. Google Scholar
  13. Chen C-Y, Wooster GA, Bowser PR (2004) Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin, or copper sulfate. Aquaculture 239(1):421–443. Google Scholar
  14. Clark DS, Brown JA, Goddard SJ, Moir J (1995) Activity and feeding behaviour of Atlantic cod (Gadus morhua) in sea pens. Aquaculture 131(1):49–57. Google Scholar
  15. Costa DP, Oliveira Paes Leme F, Takata R et al (2016) Effects of temperature on growth, survival and physiological parameters in juveniles of Lophiosilurus alexandri, a carnivorous neotropical catfish. Aquac Res 47(6):1706–1715. Google Scholar
  16. Das SK, Ghaffar MA, Bakar Y, Brito MF, Mastura SS, Temple SE (2014) X-radiographic observations of food passage and nutrient absorption along the alimentary tract of archerfish, Toxotes jaculatrix. Bull Mar Sci 90(4):903–919. Google Scholar
  17. De Silva SS, Anderson TA (1995). Fish nutrition in aquaculture (Vol. 1): Springer Science & Business MediaGoogle Scholar
  18. De M, Ghaffar MA, Das SK (2014) Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.). Paper presented at the the 2014 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium.
  19. De M, Ghaffar MA, Bakar Y, Das SK (2016) Effect of temperature and diet on growth and gastric emptying time ofthe hybrid, Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂. Aquaculture Reports 4:118–124. Google Scholar
  20. Dean A, Voss D (1999) Response surface methodology. Design and Analysis of Experiments:483–529Google Scholar
  21. Dent L, Lutterschmidt WI (2003) Comparative thermal physiology of two sympatric sunfishes (centrarchidae: Perciformes) with a discussion of microhabitat utilization. J Therm Biol 28:67–74. Google Scholar
  22. Diana JS (1995). Biology and ecology of fishes: biological sciences press, a division of Cooper publishing groupGoogle Scholar
  23. Dong Y, Dong S (2006) Growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) at constant and fluctuating water temperatures. Aquacul Res 37(13):1327–1333. Google Scholar
  24. Dong Y, Dong S, Tian X, Wang F, Zhang M (2006) Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture 255(1):514–521. Google Scholar
  25. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Ana. Chem 28(3):350–356.
  26. Ecoutin J-M, Albaret J-J, Trape S (2005) Length–weight relationships for fish populations of a relatively undisturbed tropical estuary: the Gambia. Fish Res 72(2):347–351. Google Scholar
  27. Edwards D (1971) Effect of temperature on rate of passage of food through the alimentary canal of the plaice Pleuronectes platessa L. J Fish Biol 3(4):433–439. Google Scholar
  28. Elliott JM (1994). Quantitative ecology and the brown trout: Oxford University PressGoogle Scholar
  29. Englund G, Öhlund G, Hein CL, Diehl S (2011) Temperature dependence of the functional response. Ecol Lett 14(9):914–921. Google Scholar
  30. Fielder DS, Allan GL, Pankhurst PM (2008) Comparison of two environmental regimes for culture of Australian snapper, Pagrus auratus, larvae in commercial-scale tanks. J Worl Aquacult Soc 39(3):364–374. Google Scholar
  31. Fleming IA, Hindar K, MjÖlnerÖd IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc R Soc Lond B Biol Sci 267(1452):1517–1523. Google Scholar
  32. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem 226(1):497–509Google Scholar
  33. Fonds M, Cronie R, Vethaak A, Van der Puyl P (1992) Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth J Sea Res 29(1):127–143. Google Scholar
  34. Forseth T, Hurley M, Jensen A, Elliott J (2001) Functional models for growth and food consumption of Atlantic salmon parr, Salmo salar, from a Norwegian river. Freshw Biol 46(2):173–186. Google Scholar
  35. Fry GC, Milton DA (2009) Age, growth and mortality estimates for populations of red snappers Lutjanus erythropterus and L. malabaricus from northern Australia and eastern Indonesia. Fish Sci 75(5):1219–1229. Google Scholar
  36. Garduño-Dionate M, Unzueta-Bustamante ML, Hernández-Martínez M, Lorán-Núñez RM, Martínez-Isunza FR (2010) Crecimiento de huachinangos juveniles silvestres (Lutjanus peru) en un encierro de engorda en Puerto Vicente Guerrero, Guerrero. Cien Pesq 18(1):93–96Google Scholar
  37. Gill H, Weatherley A (1984) Protein, lipid and caloric contents of bluntnose minnow, Pimephales notatus Rafinesque, during growth at different temperatures. J Fish Biol 25(4):491–500. Google Scholar
  38. Goos HT, Consten D (2002) Stress adaptation, cortisol and pubertal development in the male common carp, Cyprinus carpio. Mol Cell Endocrinol 197(1):105–116. Google Scholar
  39. Grove D, Loizides L, Nott J (1978) Satiation amount, frequency of feeding and gastric emptying rate in Salmo gairdneri. J Fish Biol 12(5):507–516. Google Scholar
  40. Grove D, Moctezuma M, Flett H, Foott J, Watson T, Flowerdew M (1985) Gastric emptying and the return of appetite in juvenile turbot, Scophthalmus maximus L., fed on artificial diets. J Fish Biol 26(3):339–354. Google Scholar
  41. Gwyther D, Grove D (1981) Gastric emptying in Limanda limanda (L.) and the return of appetite. J Fish Biol 18(3):245–259. Google Scholar
  42. Hallaråker H, Folkvord A, Stefansson SO (1995) Growth of juvenile halibut (Hippoglossus hippoglossus) related to temperature, day length and feeding regime. Neth J Sea Res 34(1):139–147. Google Scholar
  43. Handeland S, Berge Å, Björnsson BT, Lie Ø, Stefansson S (2000) Seawater adaptation by out-of-season Atlantic salmon (Salmo salar L.) smolts at different temperatures. Aquaculture 181(3):377–396. Google Scholar
  44. Handeland S, Arnesen A, Stefansson S (2003) Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220(1):367–384. Google Scholar
  45. Handeland SO, Imsland AK, Stefansson SO (2008) The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283(1):36–42. Google Scholar
  46. Harrison T (2001) Length–weight relationships of fishes from south African estuaries. J Appl Ichthyol 17(1):46–48. Google Scholar
  47. Huebner JD, Langton RW (1982) Rate of gastric evacuation for winter flounder, Pseudopleuronectes americanus. Can J Fish Aquat Sci 39(2):356–360. Google Scholar
  48. Imsland AK, Foss A, Gunnarsson S, Berntssen MHG, FitzGerald R, Bonga SW, Ham E, Nævdal G, Stefansson SO (2001) The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture 198(3):353–367. Google Scholar
  49. Imsland A, Foss A, Sparboe L, Sigurdsson S (2006) The effect of temperature and fish size on growth and feed efficiency ratio of juvenile spotted wolffish Anarhichas minor. J Fish Biol 68(4):1107–1122. Google Scholar
  50. Imsland AK, Björnsson BT, Gunnarsson S, Foss A, Stefansson SO (2007) Temperature and salinity effects on plasma insulin-like growth factor-I concentrations and growth in juvenile turbot (Scophthalmus maximus). Aquaculture 271(1):546–552. Google Scholar
  51. Jobling M (1980) Gastric evacuation in plaice, Pleuronectes platessa L.: effects of temperature and fish size. J Fish Biol 17(5):547–551. Google Scholar
  52. Jobling M (1995) Fish bioenergetics. Oceanogr Lit Rev 9(42):785Google Scholar
  53. Jobling M, Davies PS (1980) Gastric evacuation in plaice, Pleuronectes platessa L.: effects of temperature and meal size. J Fish Biol 17(5):547–551. Google Scholar
  54. Jobling M, Meløy O, Dos Santos J, Christiansen B (1994) The compensatory growth response of the Atlantic cod: effects of nutritional history. Aquac Int 2(2):75–90. Google Scholar
  55. Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209(12):2249–2264. Google Scholar
  56. Jonassen T, Imsland A, Stefansson S (1999) The interaction of temperature and fish size on growth of juvenile halibut. J Fish Biol 54(3):556–572. Google Scholar
  57. Jonassen TM, Imsland AK, Kadowaki S, Stefansson SO (2000) Interaction of temperature and photoperiod on growth of Atlantic halibut Hippoglossus hippoglossus L. Aquac Res 31(2):219–227. Google Scholar
  58. Jonsson B, Forseth T, Jensen A, Næsje T (2001) Thermal performance of juvenile Atlantic Salmon, Salmo salar L. Funct Ecol 15(6):701–711. Google Scholar
  59. Jun Q, Pao X, Haizhen W, Ruiwei L, Hui W (2012) Combined effect of temperature, salinity and density on the growth and feed utilization of Nile tilapia juveniles (Oreochromis niloticus). Aquac Res 43(9):1344–1356. Google Scholar
  60. Katersky RS, Carter CG (2005) Growth efficiency of juvenile barramundi, Lates calcarifer, at high temperatures. Aquaculture 250(3):775–780. Google Scholar
  61. Kawaguchi Y, Miyasaka H, Genkai-Kato M, Taniguchi Y, Nakano S (2007) Seasonal change in the gastric evacuation rate of rainbow trout feeding on natural prey. J Fish Biol 71(6):1873–1878. Google Scholar
  62. Kofuji PYM, Akimoto A, Hosokawa H, Masumoto T (2005) Seasonal changes in proteolytic enzymes of yellowtail Seriola quinqueradiata (Temminck & Schlegel; Carangidae) fed extruded diets containing different protein and energy levels. Aquac Res 36(7):696–703. Google Scholar
  63. Kooijman SALM (2000). Dynamic energy and mass budgets in biological systems. Cambridge university pressGoogle Scholar
  64. Lee S-M, Hwang U-G, Cho SH (2000) Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture 187(3):399–409. Google Scholar
  65. Love RM (1970). The chemical biology of fishes: with a key to the chemical literature. Academic Press, New York, 170 (3956): 431–432 doi: Google Scholar
  66. Martinez-Palacios C, Chavez-Sanchez MC, Ross L (1996) The effects of water temperature on food intake, growth and body composition of Cichlasoma urophthalmus (Günther) juveniles. Aquac Res 27(6):455–461. Google Scholar
  67. Mazlan A, Grove D (2003) Gastric digestion and nutrient absorption along the alimentary tract of whiting (Merlangius merlangus L.) fed on natural prey. J Appl Ichthyol 19(4):229–238. Google Scholar
  68. Mazumder SK, Das SK, Bakar Y, Ghaffar MA (2016) Effects of temperature and diet on length-weight relationship and condition factor of the juvenile Malabar blood snapper (Lutjanus malabaricus Bloch & Schneider, 1801). J Zhejiang Univ Sci B 1 17(8):580–590. Google Scholar
  69. Michalsen K, Ottersen G, Nakken O (1998) Growth of north-East Arctic cod (Gadus morhua L.) in relation to ambient temperature. ICES J Mar Sci: J du Con 55(5):863–877. Google Scholar
  70. Miegel R, Pain S, Van Wettere W, Howarth G, Stone D (2010) Effect of water temperature on gut transit time, digestive enzyme activity and nutrient digestibility in yellowtail kingfish (Seriola lalandi). Aquaculture 308(3):145–151. Google Scholar
  71. Mihelakakis A, Kitajima C (1994) Effects of salinity and temperature on incubation period, hatching rate, and morphogenesis of the silver sea bream, Sparus sarba (Forskål, 1775). Aquaculture 126(3):361–371. Google Scholar
  72. Ming-feng L (2011) Progress and perspective on research of Pelteobagrus vachelli (Richardson). Modern Fish Info 1:004Google Scholar
  73. Morais S, Bell JG, Robertson DA, Roy WJ, Morris PC (2001) Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L.): effects on growth, feed utilisation, muscle composition and liver histology. Aquaculture 203(1):101–119. Google Scholar
  74. Morales AE, Cardenete G, Abellán E, García-Rejón L (2005) Stress-related physiological responses to handling in common dentex (Dentex dentex Linnaeus, 1758). Aquac Res 36(1):33–40. Google Scholar
  75. Naik MK, Reddy H, Annappaswamy T (2000) Influence of diet composition, starvation and feeding frequency on gastric evacuation rates in Catla, Catla catla (Hamilton) fingerlings. Indian J Anim Sci 70(10):1090–1093Google Scholar
  76. Nanton D, Lall S, McNiven MA (2001) Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L. Aquac Res 32(s1):225–234. Google Scholar
  77. Neverman D, Wurtsbaugh WA (1994) The thermoregulatory function of diel vertical migration for a juvenile fish, Cottus extensus. Oecologia 98(3–4):247–256. Google Scholar
  78. Paine RT (1964). Ash and calorie determinations of sponge and opisthobranch tissues. Ecology 45(2):384–387.
  79. Peck MA, Buckley LJ, Caldarone EM, Bengtson DA (2003) Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus. Mar Ecol Prog Ser 251:233–243. Google Scholar
  80. Pérez-Casanova JC, Lall SP, Gamperl AK (2009) Effect of feed composition and temperature on food consumption, growth and gastric evacuation of juvenile Atlantic cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus L.). Aquaculture 294(3):228–235. Google Scholar
  81. Raymont JE, Austin J, Linford E (1964) Biochemical studies on marine zooplankton: I. The biochemical composition of Neomysis integer. ICES J Mar Sci 28(3):354–363Google Scholar
  82. Rosenlund G, Skretting M (2006) Worldwide status and perspective on gadoid culture. ICES J Mar Sci: J du Cons 63(2):194–197. Google Scholar
  83. Santamaría-Miranda A, Elorduy-Garay JF, Villalejo-Fuerte M, Rojas-Herrera AA (2003) Desarrollo gonadal y ciclo reproductivo de Lutjanus peru (Pisces: Lutjanidae) en Guerrero. México Rev Biol Trop 51(2):489–502Google Scholar
  84. Santos J, Jobling M (1991) Factors affecting gastric evacuation in cod, Gadus morhua L., fed single-meals of natural prey. J Fish Biol 38(5):697–713. Google Scholar
  85. Schmidt-Nielsen K (1997). Animal physiology: adaptation and environment: Cambridge University pressGoogle Scholar
  86. Shalaby A, Khattab Y, Abdel Rahman A (2006) Effects of garlic (Alliumsativum) and chloramphenicol on growth performance, physiological parameters and survival of Nile tilapia (Oreochromis niloticus). J Venomous Anim Toxins Incl Trop Dis 12(2):172–201. Google Scholar
  87. Simon KD, Bakar Y, Samat A, Zaidi CC, Aziz A, Mazlan AG (2009) Population growth, trophic level, and reproductive biology of two congeneric archer fishes (Toxotes chatareus, Hamilton 1822 and Toxotes jaculatrix, Pallas 1767) inhabiting Malaysian coastal waters. J Zhejiang Univ Sci B 10(12):902–911. Google Scholar
  88. Simon KD, Bakar Y, Temple S, Mazlan AG (2011) Spitting success and accuracy in archer fishes Toxotes chatareus (Hamilton, 1822) and Toxotes jaculatrix (Pallas 1767). Sci Res Essays 6(7):1627–1633Google Scholar
  89. Simon KD, Bakar Y, Mazlan AG, Zaidi CC, Samat A, Arshad A, Temple SE, Brown-Peterson NJ (2012) Aspects of the reproductive biology of two archer fishes Toxotes chatareus, (Hamilton 1822) and Toxotes jaculatrix (Pallas 1767). Environ Biol Fish 93(4):491–503. Google Scholar
  90. Simon KD, Mazlan AG, Cob ZC (2013) Condition factors of two archerfish species from Johor coastal waters, Malaysia. Sains Malaysiana 42(8):1115–1119Google Scholar
  91. Sokal RR, Rohlf FJ (1995) Biometry: the principles andpractice of statistics in biological research. WH. Freeman & Co., San Francisco. SokalBiometry: the principles and practice of statistics in biological research 1995Google Scholar
  92. Solbakken VA, Hansen T, Stefansson SO (1994) Effects of photoperiod and temperature on growth and parr-smolt transformation in Atlantic salmon (Salmo salar L.) and subsequent performance in seawater. Aquaculture 121(1):13–27. Google Scholar
  93. Soundarapandian P, Ananthan G (2008) Effect of unilateral eyestalk ablation on the biochemical composition of commercially important juveniles of Macrobrachium malcolmsonii. Int J Zool Res 4(2):106–112.
  94. Stickney RR, Wurts WA (1986) Growth response of blue tilapias to selected levels of dietary menhaden and catfish oils. Prog Fish-Cult 48(2):107–109.<107:GROBTT>2.0.CO;2 Google Scholar
  95. Sweka JA, Keith Cox M, Hartman KJ (2004) Gastric evacuation rates of brook trout. Trans Am Fish Soc 133(1):204–210. Google Scholar
  96. Swenson WA, Smith LL Jr (1973) Gastric digestion, food consumption, feeding periodicity, and food conversion efficiency in walleye (Stizostedion vitreum vitreum). J Fish Board Can 30(9):1327–1336. Google Scholar
  97. Tacon A (1990). Standards methods for the nutrition and feeding of farmed fish and shrimp. Argent laboratories press.
  98. Tanck M, Booms G, Eding E, Bonga S, Komen J (2000) Cold shocks: a stressor for common carp. J Fish Biol 57(4):881–894. Google Scholar
  99. Treasurer JW, Hastie LC, Hunter D, Duncan F, Treasurer CM (2006) Effects of (Margaritifera margaritifera) glochidial infection on performance of tank-reared Atlantic salmon (Salmo salar). Aquaculture 256(1):74–79. Google Scholar
  100. Wetherbee BM, Gruber SH, Ramsey AL (1987) X-radiographic observations of food passage through digestive tracts of lemon sharks. Trans Am Fish Soc 116(5):763–767.<763:XOOFPT>2.0.CO;2 Google Scholar
  101. Windell JT, Foltz JW, Sarokon JA (1978) Effect of fish size, temperature, and amount fed on nutrient digestibility of a pelleted diet by rainbow trout, Salmo gairdneri. Trans Am Fish Soc 107(4):613–616.<613:EOFSTA>2.0.CO;2 Google Scholar
  102. Wuenschel M, Werner R (2004) Consumption and gut evacuation rate of laboratory-reared spotted seatrout (Sciaenidae) larvae and juveniles. J Fish Biol 65(3):723–743. Google Scholar
  103. Xiao-Jun X, Ruyung S (1992) The bioenergetics of the southern catfish (Silurus meridionalis Chen): growth rate as a function of ration level, body weight, and temperature. J Fish Biol 40(5):719–730. Google Scholar
  104. Yang Y, Xie S, Cui Y, Zhu X, Lei W, Yang Y (2006) Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquac Res 37(1):40–48 Google Scholar
  105. Zar JH (1996) Bioestadistical analysis. Pearson Education IndiaGoogle Scholar
  106. Zeng W, Li Z, Ye S, Xie S, Liu J, Zhang T, Duan M (2010) Effects of stocking density on growth and skin color of juvenile darkbarbel catfish Pelteobagrus vachelli (Richardson). J Appl Ichthyol 26(6):925–929. Google Scholar
  107. Zhang G, Yin S, Wang Y, Li L, Wang X, Ding Y, Hu Y (2015) The effects of water temperature and stocking density on survival, feeding and growth of the juveniles of the hybrid yellow catfish from Pelteobagrus fulvidraco (♀)× Pelteobagrus vachelli (♂). Aquac Res 47(9):2844–2850. Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sabuj Kanti Mazumder
    • 1
    • 2
  • Mazlan Abd Ghaffar
    • 3
  • Simon Kumar Das
    • 1
    • 4
    Email author
  1. 1.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaSelangorMalaysia
  2. 2.Department of Aquatic Resource Management, Faculty of FisheriesSylhet Agricultural UniveristySylehtBangladesh
  3. 3.Institute of Oceanography and EnvironmentUniversiti Malaysia TerengganuKuala NerusMalaysia
  4. 4.Marine Ecosystem Research Center (EKOMAR), Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaSelangorMalaysia

Personalised recommendations